Выбрать главу

Модель представлена в виде необучающегося полного М-автомата. Его М-сеть содержит более 1000 i-моделей и 8000 связей между ними. М-автомат реализован в виде программы для ЦВМ БЭСМ-6, содержащей около 500 команд. Время просчета одного такта — 2 сек. В экспериментах наблюдалось поведение модели на протяжении до 100 тактов. На вход модели подавались буквы русского алфавита, объединенные в слова и фразы, а также специальные объекты, соответствующие образам предметов. На выходе модели, в зависимости от режима ее работы, наблюдались последовательности букв русского алфавита, которые были либо ответами на входные вопросы, либо повторением входных слов, либо названиями предметов. То обстоятельство, что при создании модели широко использовались данные нейрофизиологии, позволило в экспериментах имитировать ряд поражений мозга органического и функционального характера, приводящих к нарушениям функций речи. В частности, получены модельные отображения синдромов сенсорной, моторной, проводниковой и транскортикальной афазий.

Описанные М-автоматы составляют основной фонд «больших» моделей, разработанных и исследованных в процессе изучения возможностей и практических методов использования М-сетей.

Нами были выполнены и некоторые модельные разработки, в которых аппарат М-сетей использовался эпизодически или в модифицированном виде. Анализ результатов, полученных в разработках такого рода, может представлять серьезный интерес при оценке возможностей и свойств обсуждаемого нами аппарата.

Весь опыт моделирования поведения «разумного субъекта» в некоей среде — «лабиринте» — с использованием М-сети и расчетами на ЦВМ подытожен в монографии [4]. В качестве примера на рис. 3 приведены результаты одного из экспериментов по исследованию поведения такого «субъекта».

Семь-восемь лет мы занимались созданием сетевых моделей на ЦВМ, пока не убедились, что возможности таких моделей ограничены. Объем расчетов оказался слишком большим даже для компьютера: за один такт нужно пересчитать циркуляцию «энергии» по всем связям и изменения в их проходимости, подсчитать активность всех элементарных моделей, пересчитать изменение их тренированности для следующего такта. Если же предусмотреть и возможность образования новых связей и новых моделей, иными словами, воспроизвести принцип самоорганизации, то количество счетной работы будет расти подобно снежному кому. Затраты машинного времени увеличиваются приблизительно пропорционально кубу числа моделей в сети. Но дело не только в расчетах — так же трудно оказалось отладить громоздкие программы. Так или иначе, выйти за предел 1000 моделей и 8000 связей нам не удалось. Формально мы воспроизвели в МОД самые простые программы психики, такие, как сознание и подсознание, оптимизация действий по многим критериям — чувствам с предвидением и планированием. Была продемонстрирована разная обобщенность или иерархия моделей, обучение, забывание и даже различия характера. Но в целом этот «субъект», путешествующий среди врагов и препятствий в поисках пищи, соответствовал лишь довольно примитивному животному.

Рис. 3. Схема движений и действий МОДа по карте.

Аналоговые модели. Роботы. Тем не менее существует много задач, для которых вполне достаточен и такой ограниченный интеллект. В частности — для роботов, предназначенных для специализированной деятельности. Важнейшим требованием для них должна быть автономность, независимость от ЦВМ, что привело к реализации сетевого интеллекта на физических элементах. Идея сама по себе проста: представить каждую элементарную модель в виде усилителя, на вход которого поступает потенциал от других моделей, а на выходе формируется усиленный потенциал, который тоже передается по связям и гасится пропорционально их сопротивлению. Из таких элементов-усилителей можно создать любую сеть, если каждому придать определенное значение — семантику. Одни элементы — модели предметов, другие — чувств и т.д., как в сетевых моделях РЭМ и МОД. Разные характеристики усилителей и разные сопротивления связей позволяют создать структуры любого назначения. Модель интеллекта на физических элементах в наибольшей мере приближается к имитации мозга. К сожалению, есть разница: несоизмеримо мало число элементов и связей. Однако сложность такого интеллекта целиком определяется технологией. Можно создать довольно большие сети, во всяком случае достаточные для робота.