Конечно, все вышеизложенное лишь в общих чертах обрисовывает проект А. Юницкого: автор просчитал все до мелочей, вплоть до стоимости ОТС. Но, помимо технической смелости проекта, возникает и другой вопрос: реально ли такое грандиозное сооружение? Ведь ойо протянется по множеству стран, пересечет океаны, потребует небывалых затрат.
В принципе ничего невозможного нет в преодолении и этих трудностей. Экваториальные государства могли бы договориться об отведении особой международной зоны для ОТС. Конечно, потребуется много металла.
Однако, если нынешний мировой автопарк вытянуть в цепочку, он сорок раз обовьется вокруг планеты по экватору. Значит, в техническом отношении человечеству вполне по силам смонтировать экваториальный «обод». И, наконец, стоимость: по предварительным подсчетам, он обойдется в 10 триллионов рублей.
Недешево! Но здесь, пожалуй, и заложен ответ на все вопросы. Такой грандиозный проект может быть осуществлен только разоруженной планетой. И только на ней он будет иметь смысл. Общепланетное Транспортное Средство может быть создано только усилиями всего мира, ибо оно будет решать общечеловеческие проблемы, а не проблемы отдельных государств. И последнее: проект Юницкого — смелая фантазия, подкрепленная определенными расчетами. И он нацелен на будущее. Но ведь и «астрогорода» тоже фантазия. Пока еще…
В Баренцевом море успешно прошла испытания первая отечественная подводная установка для ударно-бурового бурения. Она позволяет отбирать керны донных пород на глубинах до 150 метров. Создатели установки — сотрудники лаборатории морской техники разведки ПО Южморгеология — применили в ней ряд удачных технических решений. В частности, впервые в мировой практике для работы под водой использован электромагнитный молот.
Установка может быть спущена за борт любого судна — вплоть до рыболовецкого траулера — с помощью траловой лебедки. Поплавковая стабилизирующая система с гибкими направляющими тросами обеспечивает правильное положение установки на грунте при волнении на море до 3 баллов. Управление молотом осуществляется с кнопочного пульта.
Испытания показали высокую эффективность установки: на весь технологический цикл — спуск на дно, бурение пятиметровой скважины и подъем оборудования на палубу — потребовалось менее часа.
Вода, ранее незаменимый помощник при тушении пожаров, в наши дни уступила место современным и более эффективным средствам. Но и они иногда бывают бессильны. Например, если загорится металл, нужен особый состав огнетушителя.
Изобрели его специалисты Центрального научно-исследовательского института противопожарной обороны.
Они пришли к выводу, что лучше всего тушить горящий металл минеральным маслом и битумом с добавкой бромистого метилена.
Вряд ли кто мог предположить, что кипение воды можно использовать для изменения физических свойств поверхности металлов. Но именно такую идею выдвинули и успешно осуществили ученые Рижского политехнического института. Здесь родилась технология, названная микротермоцикли-рованием.
Как показали исследования, когда над какой-то точкой поверхности детали при кипении возникает паровой пузырек, металл мгновенно расходует тепло и охлаждается на несколько градусов. Такие непрерывные перепады температуры, длящиеся сотые или тысячные доли секунды, вызывают термические напряжения в материале, приводящие к сдвигам на атомно-молекулярном уровне. В результате на 30–40 процентов возрастает твердость тонкого наружного слоя металла, повышается устойчивость к износу деталей машин и механизмов.
Если кипятить не воду, а некоторые химические составы, то можно создать на детали своего рода пластичную оболочку, способную предохранять металл от образования трещин. Микротермо-циклирование также позволяет управлять тепловыми и электрическими свойствами поверхности материала.
В мировом текстильном производстве уже 47 процентов приходится на долю химических волокон. За счет них человечество покрывает сегодня весь прирост своих потребностей в волокнах для одежды, быта, техники. А еще через год-другой синтетические и искусственные волокна бесповоротно займут лидирующее положение.
Но, когда в жару рубашка из синтетики прилипает к телу, статистика и прогнозы — слабоЕ утешение. И невольно возникает вопрос: почему весь мир сделал ставку на химические волокна, а не на рост производства льна, шерсти, хлопка?
Одна из причин понятна всем: тот же хлопок растет далеко не везде, его урожаи и качество зависят от капризов природы. Но есть и внутренний «секрет»: химические волокна проще в переработке, они намного повышают производительность. Поэтому задача состоит в том, чтобы наделить их лучшими свойствами натуральных нитей…
За кулисами этой задачи — третья причина: похоже, за последние годы химики убедились, что у них гораздо больше шансов «перекачать» ценные свойства от натуральных волокон к химическим, чем наоборот.
Подтверждением тому — био-ПАНволокно. Сокращение ПАН выдает его полиакрило-нитрильную природу. Но в процессе получения эта синтетическая основа получает «добавку» в виде биомассы из особых микроорганизмов. И приобретает свойства, приближающие его к шерсти…
Способ получения углеродных волокон из хлопковых и льняных разработан еще в конце прошлого века. Но потом о нем надолго забыли. И вспомнили лишь тогда, когда ракетно-космическая техника потребовала легких и прочных теплозащитных материалов. Так появились современные углеродные волокна, которые в инертной среде выдерживают до трех тысяч градусов, а в окисленной — до четырехсот…
Сегодня углеродные волокна получают в основном из вискозных и поли-акрилонитрильных, нагревая их до высоких температур в инертной среде. При этом атомы кислорода, водорода, азота и других элементов «выжигаются», но углеродная цепочка полимерной молекулы остается. Понятно, что волокно с такой «конструкцией» получается хрупким. Но даже как простой наполнитель оно наделило изделия прочностью металла при весе в 3–5 раз меньше. А потом специалисты научились превращать его в нити, жгуты, ленты, ткани.
И сразу как из рога изобилия посыпались новые области применения. Костюмы с электроподогревом, отопительные элементы для домиков газовиков, теплиц, кабин тракторов и дорожных машин — они могут питаться током напряжением от 36 до 220 вольт. В конструкциях самолетов листовые панели на основе углеродной ленты вступили в спор со стеклопластиками, снижая вес конструкции на 10–15 процентов.
Углеродное волокно нашло применение и в фильтрах для очистки лекарств и донорской крови, в системах улавливания вредных выбросов и защиты органов дыхания. Здесь оно поглощает самые разные вредные вещества — вплоть до паров ртути — в 3–4 раза быстрее, чем активированный уголь.
Но и на этом перечень профессий углеродного волокна не кончается. До недавнего времени считалось, что углерод существует в трех формах — в виде алмаза, графита и аморфного углерода. Ученые же Института элементоорганических соединений АН СССР доказали, что есть и четвертый вариант — углерод с линейной структурой, получивший название карбин. По свойствам он — полупроводник. Но под действием света во много раз увеличивает электропроводность, благодаря чему может быть использован в фотоэлементах. А сегодня на основе карбина создано волокно витлан, незаменимое в восстановительной хирургии. Химики давно научились делать искусственные кровеносные сосуды из волокон. Но все они сохраняли недостаток естественных — в них образовывались тромбы. Сосуды же из витлана исключили эту опасность. Если уж менять что-то в организме на «запасные части», так пусть они будут лучше, чем созданные природой…