Особенно большой выигрыш этот способ обещает при производстве бумаги. Сегодня, чтобы получить чистое сырье, приходится отправлять в отходы вместе с корой до 2–7 процентов древесины. СВЧ-технология практически исключает потери. Более того, оказалось, что она может быть с успехом применена и для превращения древесной щепы в волокнистую массу. Нужно лишь заставить клетки взрываться. Только теперь — по всему объему древесины. Для этого нужен мощный импульс СВЧ-поля, способный за две сотые доли секунды создать в клетках избыточное давление порядка 4 атмосфер. И тогда щепа практически мгновенно превратится в волокнистую массу.
Можно поручить СВЧ-полю и сбор ценной хвои. Как известно, она содержит большое количество биологически активных веществ. Добавка в рацион скота и птицы 3–5 процентов хвойно-витаминной муки заметно повышает их продуктивность.
А теперь представьте такую картину: на делянке со срубленными деревьями появляется машина, оснащенная СВЧ-генератором и мощным «пылесосом». Включены агрегаты — и иглы хвои, словно по мановению волшебной палочки, сами отрываются от веток и засасываются в приемный бункер. В чем дело? Секрет прост: радиоволны «перерубают» основание у хвоинок, которое в несколько раз тоньше самих иголок. И «пылесосу» остается лишь втянуть их.
Впрочем, и этот пример не исчерпывает всех возможностей СВЧ-поля. Новые исследования принесут и новые открытия. Но пока надо думать о практической реализации найденных решений. В нынешней пятилетке промышленность намечает освоить серийный выпуск мощных СВЧ-генераторов. С их появлением связаны и наши надежды на перевооружение лесного конвейера.
Когда нефтеналивные суда совершают тысячемильные переходы, солнце нещадно нагревает палубу.
Повышается температура и в танках с нефтью, из которой начинают испаряться самые ценные легкие фракции. Как уменьшить эти потери? Казалось бы, ответ известен: надо покрывать палубу эмалью с добавками, например, алюминиевой пудры, частицы которой хорошо отражают солнечные лучи.
Но такое решение не устроило моряков: часами сверкающая палуба — слишком утомительное зрелище для глаз. И тогда специалисты ленинградского НПО «Пигмент» создали теплоотражающую эмаль… зеленого цвета. Не утомляя глаз, она на 5—10 градусов снижает температуру нагрева палубы со стороны грузовых танков. И почти на 40 процентов уменьшает потери от испарения.
Борьба с вредителями с помощью гербицидов породила непростую проблему: несмотря на все меры предосторожности, от них гибнут и насекомые, опыляющие растения. Конечно, можно применить искусственное опыление. Но и оно не всесильно. Особенно когда речь идет о подсолнечнике, гречихе, люцерне.
Решая эту проблему, сотрудники кафедры механизации и электрификации сельского хозяйства Херсонского сельскохозяйственного института вспомнили о таком устройстве, как электроскоп.
Его стержень с шариком и опавшими бумажными лепестками хорошо нам знаком еще со школы. Помним мы и другое: стоит поднести к шарику палочку, заряженную статическим электричеством, — и лепестки, получив одноименный заряд, тотчас расходятся. Почему бы не использовать это явление? У цветка есть стержень-стебель и лепестки. Чем не электроскоп?
Опыты подтвердили смелую догадку. Когда к ножке цветка прикасались гибким заряженным электродом, его лепестки, получив одноименные заряды, тут же раскрывались.
Работы эти продолжаются: найденное решение теперь предстоит воплотить «в металле», в виде конкретной машины.
Автоматизированный учет количества влаги, выпадающей в виде снега в горах близ столицы Казахстана Алма-Аты, начали проводить с помощью космических лучей.
Приборы размещены на двух уровнях — под снегом и над ним. Это позволяет регистрировать влияние воды в снегу на интенсивность потока космического излучения. Контроль за снежным покровом с помощью космических частиц высоких энергий обеспечивает большую точность учета влаги, законсервированной в снеговой толще. Это имеет важное значение для заблаговременного определения размеров предстоящего весеннего половодья на реках, планирования режимов эксплуатации ирригационных водохранилищ и работы гидроэлектростанций.
Система, действующая в автономном режиме, сконструирована учеными Казахского университета.
Несколько часов потребовалось гляциологам Казахстана для «взвешивания» ста с лишним глетчеров хребта Джунгарский Алатау. Для этого использовалась радиолокационная система, установленная на вертолете. С ее помощью зондировались расположенные выше облаков вечные льды на всю их толщу.
Отраженное при этом «эхо» регистрировалось на пленке. Ее анализ дал возможность определить запасы законсервированной в глетчерах пресной воды. Оказалось, что в каждом из них хранится по 10–15 миллионов кубических метров чистейшей влаги.
Полученные сведения важны для развития поливочного земледелия на юге Казахстана, для прогнозирования изменений климата в этом районе.
Случилось непредвиденное: после того как вступила в строй Красноярская ГЭС, на Енисее каждую зиму ниже плотины образуется полынья длиной… 300–400 километров. Она «живет» по своим законам: крепчают морозы — и полынья укорачивается, потеплеет — снова увеличивается. Но полностью не замерзает даже в самые сильные холода.
Теперь, когда в Красноярск приходят морозы в 35–40 градусов, улицы погружаются в молочную пелену — Это «парит» полынья на Енисее. Клубы тумана мешают движению городского транспорта, нарушают расписание Аэрофлота. А лето приносит немалые огорчения любителям плавания: температура воды в Енисее не поднимается выше 10–12 градусов. И купаются в нем только «моржи».
Не будем спешить с критикой в адрес проектировщиков гидроузла: по их расчетам, длина полыньи не должна была превышать 20 километров. А так как гидроэлектростанция строилась значительно дальше от Красноярска, то она ничем городу не угрожала. Лишь потом выяснилось, что методика, по которой велись расчеты, непригодна для могучего Енисея; такая же полынья выросла и за плотиной Саяно-Шушенской ГЭС,
Но для красноярцев эти доводы — слабое утешение. Им не нравится, что зимой на реке нет крепкого льда. А значит — невозможны и давние транспортные связи между хозяйствами, расположенными на разных берегах и на островах. Медиков беспокоит выросшая влажность воздуха — в морозы она способствует возникновению заболеваний верхних дыхательных путей. А гидрологам не нравится, что дно реки начало интенсивно зарастать водорослями. Словом, были причины, чтобы задуматься: как же все-таки заморозить Енисей?
Наши расчеты и прикидки показывают, что проблему можно решить несколькими путями. Водохранилище за плотиной объемом в 30,4 миллиарда кубометров — это огромный накопитель тепловой энергии. Из него вода в турбинные водоводы поступает не с поверхности, а почти с сорокаметровой глубины. И поэтому практически всегда имеет одну и ту же температуру: зимой — достаточно высокую, чтобы не замерзать, летом—слишком низкую для любителей купания. Причем поток этой воды настолько мощный, что, даже миновав турбины ГЭС, она не может сразу перемешаться с водной массой за плотиной. Ей требуется пройти еще 300–400 километров, чтобы прийти «в норму».
Отсюда и напрашивалось решение: так организовать забор воды для гидротурбин, чтобы она поступала не с глубины, а с поверхностных слоев водохранилища. В этих слоях температурный режим воды близок к естественному.
Чтобы осуществить эту идею, надо вдоль всей плотины со стороны водохранилища опустить на глубину до трех метров большой плавающий щит с козырьком. Последний должен быть направлен в сторону верхнего бьефа, чтобы преграждать путь в водоводы восходящим потокам, идущим из глубин. Этот козырек надо сделать подвижным — чтобы регулировать потоки в зависимости от уровня воды в водохранилище. А сам щит можно изготовить из самых разных материалов — даже из дерева.