На этом эффекте и были созданы приборы, позволяющие обнаружить ничтожные примеси. В их камеру-резонатор помещали изучаемое вещество и облучали радиоволнами той длины, на которую были «настроены» атомы примесей. По тому, как в результате поглощения падала мощность излучения, и определялось их количество. Беда лишь в том, что этот метод позволял «ловить» примеси в виде отдельных атомов, в лучшем случае-двух- или трехатомных молекул. На более крупные образования его чувствительности уже не хватало. А большинство примесей, интересующих ученых и производственников, представляют собой многоатомные молекулы. Как научиться «опознавать» и их?
За решение этой задачи взялись сотрудники лаборатории химической радиоспектроскопии Института химической физики Академии наук СССР во
главе с профессором Я. Лебедевым. В качестве источника излучения они решили применить лазер, работающий на инфракрасных и субмиллиметровых волнах. Именно в этом диапазоне многоатомные молекулы заявили о себе, что называется, во весь голос. Лазерный спектрометр позволял точно оценить количество не только многоатомных молекул, но и радикалов химически активных «осколков».
— А потом возникла идея объединить преимущество обоих методов лазерного и электронного парамагнитного, — говорит профессор Я. Лебедев. — Она воплотилась в установке, которая позволяет не только определять количество атомов и молекул примеси, но и нагревать лучом лазера всю смесь, любой из ее компонентов или только поверхность вещества. В ней можно разрушать или «штопать» молекулы. И даже прямо воздействовать на химию процесса.
Чувствительность нового прибора фантастическая: он может «поймать» одну молекулу примеси, спрятавшуюся в миллиарде (!) молекул основного вещества. Такое не по силам даже собаке с ее прославленным нюхом.
ЗЕРКАЛА ВМЕСТО ЛУНЫ
Что ни говорите, а в темноте человек чувствует себя не очень уютно. Поэтому и горят миллионы ламп в ночное время всюду, где живут люди. Ученые предлагают использовать для ночного освещения городов зеркала, размещенные на спутниках. Эти спутники должны находиться на
ной орбите, то есть как бы висеть над определенным местом нашей планеты. Зеркала смогут отражать во много раз больше солнечного света, чем Луна. Размер этих зеркал чуть меньше километра в диаметре. С помощью ЭВМ будут управлять их наклоном и тем самым менять освещаемую площадь. Зеркала можно изготовить из пластмассы, покрытой алюминием, и выводить в сложенном виде на орбиту на борту космического корабля. После отделения от корабля зеркала раскроются как зонтики. Правда, перед тем, как приступить к осуществлению проекта, необходимо изучить возможные влияния такого освещения на человека и животных, чем сейчас и занимаются ученые.
ГЕМОГЛОБИНОВАЯ ГУБКА
Изобретены искусственные подводные легкие для получения из морской воды кислорода. Прибор, получивший название «гемоспандж» (в дословном переводе — "гемоглобиновая губка"), представляет собой полимер, пропитанный молекулами гемоглобина, то есть красного дыхательного пигмента крови, который связывает кислород и переносит его от органов дыхания к тканям. Гемоспандж, как и губка, обладает очень большой поверхностью, поэтому значительное количество гемоглобина приходит в соприкосновение с протекающей через прибор водой. Расчеты показывают, что труба диаметром около метра и длиною девять метров, наполненная гемоспанджем, может под водой обеспечить кислородом 150 человек.
АЛЮМИНИЙ ДЛЯ СЕЛА
Рассказывает академик А. Белов
ФАНТАСТИЧЕСКИЙ РОСТ
Значительную часть своих сил наш Всесоюзный институт легких сплавов направляет на создание совершенных технологий получения и обработки алюминия, изыскание наиболее эффективных областей и способов применения его в народном хозяйстве.
1986 год — год 100-летия алюминия как промышленного металла. Уместно в связи с этим напомнить некоторые факты из истории его применения.
В свободном виде алюминий был получен в 1825 году. И в течение почти 60 лет он оставался редким, драгоценным металлом, не имеющим никакого промышленного применения. Так, в 1854–1855 годах было изготовлено всего 25 килограммов алюминия по цене около 45 рублей золотом за килограмм. Лишь с 1886 года, когда одновременно и независимо друг от друга французский металлург П. Эру и американский физик Ч. Холл предложили способ получения алюминия электролизом криолитно-глиноземных расплавов, начало развиваться его промышленное производство. Уже в 1890 году было получено несколько сотен тонн алюминия. К настоящему времени годовой выпуск его в мире увеличился в 75 тысяч раз! История не знает таких темпов вторжения в жизнь какого-либо другого промышленного металла. По объему производства алюминий сегодня занимает второе место