Выбрать главу

Крыльчатые ветродвигатели работают за счет аэродинамических сил, возникающих на лопастях ветроколеса, при набегании на них воздушного потока. Так же, как и на крыльях самолета, на крыльях ветроколеса возникают подъемная сила и сила сопротивления поверхности. Подъемная сила и создает вращающий момент на ветроколесе.

Для того чтобы лучше использовать энергию ветра, т. е. получить большую мощность, крыльям придают обтекаемые, аэродинамические профили, а углы заклинения делают переменными вдоль лопасти (на конце — меньше, а ближе к валу — большие углы). На рис. 1.4 представлена схема крыльчатого ветроколеса.

Рис. 1.4. Схема крыльчатого ветроколесо

Крыло ветроколеса состоит из трех основных узлов: лопасти и маха, с помощью которого оно скрепляется со ступицей.

 Определение.

Угол, который составляет лопасть с плоскостью вращения ветроколеса, называется углом заклинения и обозначается буквой φ. Углы, под которыми ветер набегает на элементы лопасти, обозначаются буквой а и называются углами атаки.

Если бы ветроколесо было неподвижным, то направление потока, набегающего на лопасть, совпадало бы с направлением ветра (т. е. по стрелке V). Но так как ветроколесо вращается, то каждый элемент лопасти имеет определенную окружную скорость ωR, которая тем больше, чем дальше отстоит элемент от оси ветроколеса. Эта скорость направлена в плоскости вращения ветроколеса. Таким образом, поток обдувает элементы лопасти с какой-то скоростью, складывающейся из скоростей V и ωR. Эта скорость получила название относительной скорости потока и обозначается буквой W.

Для каждого элемента лопасти эта скорость имеет свою величину и набегает под разными углами α. А так как наилучший режим работы крыльчатого ветродвигателя будет только при определенных углах атаки, то и приходится углы заклинения φ делать переменными по длине лопасти.

Важно иметь в виду, что если лопасти выполнены одинакового качества и профиля, то мощность ветродвигателя практически очень мало зависит от числа лопастей.

Ведь мощность ветродвигателя, как и любого другого двигателя, определяется произведением развиваемого двигателем вращающего момента М на угловую скорость ω.

 Примечание.

Момент, развиваемый ветродвигателем, с уменьшением числа лопастей падает, однако примерно в той же пропорции возрастает число оборотов, т. е. угловая скорость. Таким образом, произведение Мω остается почти постоянным, мало зависящим от числа лопастей.

Кроме ветродвигателей крыльчатого типа, известны карусельные, роторные и барабанные ветродвигатели.

Первые два типа имеют вертикальную ось вращения, а последний — горизонтальную.

В отличие от крыльчатых ветродвигателей, у которых все лопасти работают одновременно, создавая вращающий момент, у карусельных и барабанных ветродвигателей одновременно работает лишь часть лопастей, а именно тех, движение которых совпадает с направлением ветра.

Для того чтобы уменьшить сопротивление лопастей, идущих навстречу ветру, их прикрывают ширмой, либо делают изогнутыми.

Вращающий момент на ветроколесах этих типов двигателей возникает за счет разности давлений на лопастях.

Ввиду малой эффективности (χ у этих ветродвигателей не превышает значения 0,18) и громоздкости, а также вследствие того, что они очень тихоходны, карусельные, барабанные и роторные двигатели в практике не нашли применения.

1.4. Упрощенная схема работы ветрогенератора

На сегодня существует два основных варианта работы ветрогенераторов.

Классическая несетевая схема: работа с аккумуляторными батареями и обычным инвертором. Этот вариант позволяет полностью или частично использовать автономное энергообеспечение. Для него неважно наличие общественной электросети (рис. 1.5).

Рис. 1.5. Упрощенная несетевая схема ветроэлектростанции

Сетевая схема: работа с сетевым инвертором без аккумуляторных батарей (рис. 1.6). В этой схеме можно частично или полностью компенсировать расходы на электроэнергию. Также возможна продажа электроэнергии по «зеленому тарифу». Наличие общественной сети необходимо.