Гелиоцентрической системе суждено было достичь полного признания благодаря Галилео Галилею[12], который первым наблюдал за планетами систематически. В его время, около 1600 года, в Голландии появились умелые стекольных дел мастера и, как гласит легенда, дети стекольщиков случайно заметили «увеличение» предметов с помощью выпуклых стёклышек. Голландские стеклоделы догадались изготовлять и продавать мореплавателям зрительные трубы. Галилей воспользовался идеей голландских мастеров и в 1609 году самостоятельно изготовил первый телескоп с трёхкратным увеличением. Впоследствии он изготовил телескоп с 30-кратным увеличением, с помощью которого открыл пятна на Солнце, лунные горы, спутники Юпитера — Ио, Европу, Ганимед и Каллисто.
До Галилея было общепринятым представление Аристотеля о «спокойном небе». Считалось, что раз и навсегда сотворённый мир живёт неизменной жизнью. Все замеченные изменения в звёздном мире считались незакономерными, курьёзными явлениями. Великому астроному Галилею принадлежала мысль о нестационарности «звёздного мира». Католическая церковь жестоко преследовала Галилея за провозглашение нестационарности мироздания. Нестационарность Вселенной впоследствии стала основным объектом астрофизических исследований Амбарцумяна.
Универсальность закона всемирного тяготения Ньютона получила подтверждение в работах Уильяма Гершеля[13] по исследованию двойных звёзд, вращающихся одна вокруг другой. Гершель наметил общую форму нашей Галактики, оценив её размеры, и сделал вывод, что она является одним из многочисленных звёздных «островов» во Вселенной.
Нестационарность расширяющейся Вселенной и теория Большого взрыва
После открытия Гершелем галактик одной из насущных проблем космогонии стала проблема расстояний до них. Первоначально для определения расстояний до галактик астрономы изучали в этих галактиках новые звёзды и цефеиды. Однако фундаментальному решению этой проблемы способствовало появление в XIX веке спектральных методов исследования. Её решил в 1920 году американский астроном Эдвин Хаббл[14], анализируя смещения спектральных линий далёких галактик. Он установил прямую пропорциональность красного смещения (смещения спектральных линий в сторону длинных волн) скорости удаления галактик, а также и расстояния до них (закон Хаббла). Этот закон является одним из фундаментальных законов астрономии. Он же с помощью наблюдений установил факт разбегания галактик. Оказалось, галактики удаляются со скоростями, пропорциональными их расстояниям от нас. Это означает, что если одна из них расположена от нас в сто раз дальше, чем другая, то она удаляется от нас в сто раз быстрее, чем первая.
Таким образом, Хабблом было установлено, что Вселенная не статична, а находится в состоянии расширения.
Сравнение расстояний, измеренных различными методами, подтвердило безукоризненную точность метода определения расстояний по величине красного смещения спектров звёзд. Современная астрофизика при определении расстояний пользуется в основном этим методом, особенно для самых далёких объектов, находящихся на «краю» Вселенной.
Современные крупные наземные и орбитальные телескопы способны прощупать край Вселенной, простирающийся почти до двадцати миллиардов световых лет, и измерить скорость самого далёкого, быстро удаляющегося объекта, приближающуюся к скорости света (300 ООО км/с), но не превышающую её. Блез Паскаль, блестяще опередив своё время, прекрасно сказал: «Не огромность мира вызывает восхищение, а человек, который измерил её».
Неоспоримый факт расширения Вселенной многими исследователями был принят в штыки. Долгое время упорно отвергал возможность расширения Вселенной Альберт Эйнштейн, так как это противоречило его теоретическим исследованиям.
Естественно, заманчиво «пустить» мысленно расширение Вселенной в обратном направлении и проследить эволюцию Вселенной во времени в прошлое (экстраполяция назад). Несмотря на то, что при этом возникает масса сомнений, такой подход создаёт некую полезную методическую наглядность в представлении возможной картины происхождения и эволюции Вселенной.
12
13
14