Выбрать главу

Классической и хорошо изученной галактикой является спиральная галактика в созвездии Андромеды. Она расположена на нашем северном небе, и каждый вводимый в строй большой телескоп направляется на эту галактику, чтобы получить новые данные. По размерам и по светимости она превосходит нашу Галактику. В 1917 году Дж. Ричи[177] и Г. Кертис[178] обнаружили в спиральном объекте NGC 224 (туманность Андромеды) появляющиеся и через несколько дней исчезающие яркие точки. Они правильно предположили, что это новые звёзды, наблюдаемые в момент максимума блеска. Вспышки новых в нашей Галактике бывают гораздо ярче. И если предположить, что в NGC 224 новые звёзды такой же светимости, как и галактические в момент их вспышки, то нетрудно найти расстояние до NGC 224. Оно оказалось равным 460 килопарсек, то есть в 15 раз больше диаметра нашей Галактики. Значит, NGC 224 — внегалактический объект и имеет светимость, эквивалентную восьми миллиардам Солнц. И нетрудно установить, что NGC 224 содержит около трёхсот миллиардов звёзд. Она повёрнута к нам так, что её главная плоскость составляет с лучом зрения угол в 15 градусов. Угловые размеры туманности Андромеды, измеренные Хабблом по фотографии, составили 160 на 40 секунд, что при расстоянии 460 килопарсек даёт линейные размеры 20 на 5 килопарсек. Но нужно сказать, что размеры галактики не являются вполне определёнными, поскольку у галактик нет резких границ. Например, американские астрономы Стеббинс и Уитфорд, применив фотоэлектрический метод, нашли, что границы туманности Андромеды простираются гораздо дальше, чем это следует из фотографий, и оценили её угловые размеры 450 на 110 секунд, что соответствует линейным размерам 60 на 15 килопарсек. Если согласиться с тем, что диаметр туманности Андромеды равен 60 килопарсек, то окажется, что по размерам она вдвое превосходит нашу Галактику. Но нужно иметь в виду, что возможность прослеживать материю до границ нашей Галактики ещё более трудная задача, чем в других галактиках. Ведь мы находимся внутри Галактики и не можем наблюдать её со стороны.

Туманность Андромеды имеет большое яркое ядро, из которого выходят две спиральные ветви. Сильный наклон галактики к лучу зрения несколько скрадывает рисунок ветвей, но всё-таки они ясно различимы. На фотографиях видно, что, выходя со спиральной ветвью из ядра и направляясь по ней к её концу, нужно совершать поворот по часовой стрелке. Спиральные ветви развиты умеренно, тесно прилегают к ядру, медленно отходят от него. Как и наша Галактика, туманность Андромеды имеет весьма разнообразный звёздный состав. В её спиральных ветвях сконцентрированы голубые звёзды — гиганты и сверхгиганты. Там же собрано большое число переменных звёзд различных типов. В 1938 году X. У. Бэбкок, исследуя вращение галактики Андромеды, обнаружил замечательное явление — отставание скорости вращения спиральных рукавов галактики от скорости вращения его ядра. Это свидетельствует о том, что причиной вращения является ядро, а не галактика.

Американский астроном X. К. Арп[179], тесно сотрудничавший с Амбарцумяном, в течение 290 ночей за полтора года получил около тысячи фотографий туманности Андромеды. Исследование снимков позволило ему обнаружить 30 вспышек новых звёзд. Этот результат позволил сделать вывод, что за год в туманности Андромеды вспыхивает в среднем 26 новых звёзд. Это очень важно, и Амбарцумян высоко оценил эту работу. В нашей Галактике должно за год вспыхивать примерно столько же новых звёзд, но большую часть из них наблюдать не удаётся, так как вспышки происходят близ главной плоскости Галактики, и далёкие новые звёзды не поддаются наблюдению из-за сильного поглощения света. Наблюдение рассеянных звёздных скоплений в туманности Андромеды затруднительно, но шаровые скопления, как более яркие объекты, наблюдаются уверенно. Здесь их обнаружено около 140. Важно, что в шаровых скоплениях должны, по-видимому, находиться короткопериодические цефеиды. Межзвёздный водород в туманности Андромеды сконцентрирован около главной плоскости и составляет около двух процентов массы всей звёздной системы.

Основными галактиками, представлявшими интерес для Амбарцумяна, были галактики с активными ядрами, в которых проявлялись бурные и взрывоподобные явления. Их мы рассмотрим позже.

Скопления галактик

В пятидесятых годах прошлого столетия Виктор Амазаспович перешёл от исследования нестационарных явлений в мире звёзд нашей Галактики к изучению нестационарных явлений во внегалактических объектах.

вернуться

177

Джордж Уиллис Ричи (1864–1945) — американский астроном и конструктор телескопов.

вернуться

178

Гебер Дуст Кертис (1872–1942) — американский астроном. Труды по физике звёзд и туманностей.

вернуться

179

Хэлтон Кристиан Арп (род. 1927) — американский астроном, получивший известность благодаря созданному им Атласу пекулярных галактик. Работал совместно с Бербиджами. Приверженец концепции Амбарцумяна об активности ядер галактик.