Выбрать главу

Основываясь на том, что при β-распаде ядра испускают электроны, а в ядерной реакции под действием а-частиц из ядра азота выбиваются протоны, Резерфорд, естественно, предположил, что атомные ядра состоят как раз из протонов и электронов. Модель ядра Резерфорда по существу базировалась на очевидных классических представлениях, согласно которым из составной системы могут испускаться только такие частицы, из которых она состоит. Однако модель Резерфорда не смогла объяснить удержание электрона в ядре. Расчёты показывали, что для этого удержания требуется аномально сильное взаимодействие между электронами и протонами. Добавилась и другая трудность: наличие сплошного спектра при β-распаде свидетельствовало о некоторой потере энергии, которая также не объяснялась моделью.

Возникшая ситуация, как говорил Н. Бор, породила ряд безумных гипотез. Такой же безумной показалась гипотеза Амбарцумяна и Иваненко, предположивших вопреки очевидности, что электрон не содержится в ядре, а рождается в процессе β-распада. Это соответствовало корпускулярно-волновому дуализму — основе квантовой физики. А именно: частицы, образующиеся при распаде какой-либо системы, могли и не содержаться ранее в самой этой системе. В качестве иллюстрации этого авторы приводили пример радиационного перехода атома из возбуждённого состояния в нормальное: фотон, испускаемый в этом процессе, вовсе не содержится в возбуждённом атоме, а рождается в результате электромагнитного взаимодействия, приводящего к этому переходу. В силу корпускулярно-волнового дуализма подобным образом может возникать при процессе β-распада и электрон, не содержавшийся до этого в атомном ядре.

Это была большая смелость со стороны молодых исследователей, несмотря на то, что их гипотеза полностью соответствовала квантово-механическим представлениям. Не сразу приняли гипотезу В. Паули и Н. Бор. Всё разрешилось после открытия нейтрона в 1932 году и создания Э. Ферми[111] теории β-распада. Ферми, по-видимому, не знал о гипотезе Амбарцумяна и Иваненко 1929 года и независимо пришёл к ней. Как рассказывал Б. Понтекорво[112], самое трудное для Ферми было понять, что не только фотоны, но и массивные (с массой покоя, отличной от нуля) частицы могут рождаться и исчезать в результате взаимодействия их квантовых полей.

Таким образом, Амбарцумян был первым, указавшим на то, что в атомном ядре нет электронов (1929), а Иваненко, также впервые, предложил гипотезу наличия нейтронов в ядре атома (1930). Соответствующие статьи были опубликованы в Докладах Академии наук СССР и Докладах Французской академии наук («Comptes Rendues»). Об этом подробно рассказали академики РАН С. С. Герштейн и А. А. Логунов в своих воспоминаниях об Амбарцумяне и Иваненко.

В конце 1938 года были объявлены выборы в Академию наук. Ленинградский университет предложил кандидатуру Амбарцумяна. Газета «Правда»[113] поместила статью, в в которой говорилось о том, что академия должна избрать передовых учёных. В этой статье приводилось три-четыре примера таких учёных, среди которых было названо и имя Амбарцумяна. В январе 1939-го состоялись выборы, и Амбарцумян был избран членом-корреспондентом АН СССР. Газеты писали об этих выборах как о победе настоящей науки над тёмными силами.

Глава восьмая

ЗВЁЗДНАЯ ДИНАМИКА И ВОЗРАСТ ГАЛАКТИКИ

Статистико-механические методы изучения звёздных систем

В научных трудах раннего периода В. А. Амбарцумяна особое место заняли работы по звёздной астрономии, в частности по динамике звёздных систем. Амбарцумян постоянно и упорно искал закономерности, проливающие свет на катастрофические явления в туманностях, звёздах, звёздных агрегатах, во внегалактических объектах — галактиках, квазарах и квазизвёздных объектах, находящихся в состоянии неустойчивости. Он считал, что суть физических процессов в звёздах и галактиках наилучшим образом выявляется в экстремальные, поворотные, быть может, даже в катастрофические моменты их жизнедеятельности. Но общепонятный физический смысл нестационарности небесных тел нужно было сформулировать в строго математических терминах. Амбарцумян прежде всего пишет руководство — «Статистико-механические методы изучения звёздных систем». К сожалению, рукопись осталась неопубликованной, но на её основе в 1930-х годах он читал в Ленинградском университете лекции по звёздной динамике. Она послужила основой многочисленных трудов для него и других астрономов, его коллег и учеников.

вернуться

111

Энрико Ферми (1901–1954) — итальянский физик, внёсший большой вклад в развитие современной теоретической и экспериментальной физики, один из основоположников квантовой физики.

вернуться

112

Бруно Максимович Понтекорво (1913–1993) — итальянский и советский физик (иммигрировал в СССР в 1950 году), лауреат Сталинской премии, академик АН СССР. Труды по замедлению нейтронов и их захвату атомными ядрами, нейтринной физике, слабым взаимодействиям, ядерной изомерии, астрофизике.

вернуться

113

Ежедневная общеполитическая газета, орган ЦК КПСС.