Знак суждения по Фреге может рассматриваться как общий всем предложениям предикат, типа “Истинно, что p” или “Имеет место p”. Так как предложения рассматриваются как имена, последнее вполне оправданно, поскольку с точки зрения грамматики конструкция “(( p” представляет собой глагол, приписанный имени.
Введение знака суждения основано не только на соображениях, связанных с формой выражения мысли. Важную роль знак суждения играет в структуре вывода. В качестве элементов вывода, как считает Фреге, могут использоваться только такие предложения, которые высказаны с утвердительной силой (т.е. соответствующая им мысль должна быть признана истинной), поскольку вывод заключается в вынесении суждений, осуществляемом на основе уже вынесенных ранее суждений, согласно логическим законам. Каждая из посылок есть определенная мысль, признанная истинной; точно так же признается истинной определенная мысль в суждении, которое является заключением вывода. Последнее можно прояснить специальным случаем c правилом вывода modus ponens, которое Фреге в своем шрифте понятий рассматривает в качестве единственного способа получения следствий и которое иллюстрирует еще один аргумент в пользу введения в структуру вывода особой утвердительной силы, связанной с формой повествовательного предложения в естественном языке и знаком ‘((’ в символическом языке. С точки зрения последнего, выделение особой формы суждения позволяет предотвратить petitio principi, скрытое в форме условно-категорического умозаключения. В “Если p, то q; p. Следовательно, q” заключение уже присутствует в условной посылке. Однако если в это умозаключение явно ввести знак ‘((’, то petitio principi можно избежать. В “(( Если p, то q; (( p. Следовательно,(( q” заключение в условной посылке не содержится, поскольку “(( q” не совпадает с “q”.
В силу этого Фреге считал необходимым ввести в свое «исчисление понятий» особый знакутверждения. Он указывал, что в простом равенстве «22 = 4» не содержится никакого утверждения. Это равенство просто обозначает некоторое истинностное значение. Чтобы показать, что речь идет именно об утверждении истины, Фреге предпосылает имени истинностного значения знак «((», так что в предложении «((22 = 4» утверждается, что квадрат двух есть четыре.
В «Основоположениях арифметики» Фреге указывал: «В простом равенстве еще нет утверждения; “2 + 3 = 5” только обозначает истинностное значение, ничего не говоря о том, какое из двух. Кроме того, если я написал
“2 + 3 = 5” = “2 =2”
и предполагается, что 2 = 2 есть Истина, я тем самым еще не утверждал, что сумма 2 и 3 равна 5; скорее, я только обозначил истинностное значение “2 + 3 = 5” означает то же самое, что и “2 = 2”. Нам, следовательно, требуется другой, особый знак для того, чтобы мы могли утверждать нечто как истинное. Для этой цели я предпосылаю знак «((» имени истинностного значения, так что, например, в
«((22 = 4»
утверждается, что квадрат двух есть четыре. Я отличаю суждение от мысли следующим образом: под суждением я понимаю признание истинности мысли».
Если повествовательные предложения являются именами, обозначающими абстрактные предметы «истинность» и «ложность», то по отношению к их истинностнымзначениям должен сохранять свою силу принцип взаимозаменимости равнозначных языковых выражений.Это означает, что если в сложном предложении одну из его составных частей, в свою очередь являющуюся предложением, заменить другим предложением, обладающим тем же самым значением, хотя быть может и отличающимся от первого по смыслу, то истинностное значение полученного предложения не изменится. В этой связи Фреге отмечает:
«Если наша точка зрения верна, то истинностное значение предложения, которое содержит в качестве части другое предложение, не должно измениться, если мы заменим эту часть на предложение с тем же самым истинностным значением»59.