Подход Витгенштейна к переменным существенно отличается от подхода Фреге и Рассела, для которых переменная, присутствующая в предложении, всегда указывала на определенную категорию знаков, с заданным типом значения. Скажем, для Фреге в ‘fх’ переменная ‘х’ указывает на ненасышенную, требующую дополнения часть функции, являющейся неполным символом. Аргументное место данной функции может быть занято именами, полными выражениями, которые, сочленяясь с функцией, образуют предложение. Переменная ‘х’ в таком случае указывает на класс имен. Для Витгенштейна же «каждая переменная может рассматриваться как переменная предложения. (Включая и переменное имя.)» [3.314]. Т.е. переменной является не сам по себе ‘х’, а все выражение ‘fх’. Значениями такой переменной будут не знаки особого типа, а предложения соответствующего вида. При таком подходе имя также характеризуется существенной неполнотой, поскольку его символические особенности определяются только в отношении возможности сочленения с функциональным знаком. Если собственным именам естественного языка придать функцию имен в смысле Витгенштейна, то все сказанное можно проиллюстрировать следующим примером. Допустим, что “Сократ – философ” и “Платон – философ” являются элементарными предложениями. В качестве таковых на них можно указать как на возможные значения переменной ‘Философ(х)’. Точно так же предложения “Сократ – философ” и “Сократ – грек” можно указать как значения переменной ‘((Сократ)’. Преобразовывая какую-либо часть элементарного предложения в переменную, мы всегда получаем переменную предложения, для которой существует класс предложений, являющихся всеми значениями данной переменной. Правда, этот класс может зависеть от того, что мы произвольно, как в приведенном примере, определили в качестве составных частей предложения, но «если мы превратим все те знаки, значение которых было определено произвольно, в переменные, то такой класс все еще существует. Но теперь он зависит не от какого-либо соглашения, а только от природы предложения. Он соответствует логической форме – логическому прообразу» [3.315]. Логическим первообразом предложений во всех указанных примерах будет переменная ‘(x’. Аналогичным способом можно указать логический первообраз предложений с двумя именами, скажем так: ((x,y), тремя именами: ((x,y,z) и т.п.
Логический прообраз фиксирует область осмысленного употребления возможного знака, делает его символом. Вводить знак как имя – значит учитывать прообраз тех предложений, в которых он выступает в качестве имени, т.е., сочленяясь с функциональным знаком, символизирует совершенно особым способом. Так же и в общем случае: введение знака предполагает описание вида тех предложений, в которых он может встречаться. Такой подход не предполагает апелляции к значениям знаков, а «есть только описание символов и ничего не высказывает об обозначаемом» [3.317].