Выбрать главу

Ошибка всего в одном из этих аспектов может привести к тому, что данные окажутся частично или полностью непригодными к использованию или, хуже того, будут казаться достоверными, но приведут к неправильным выводам.

Далее мы остановимся на процессах и проблемах, способных ухудшить качество данных, на некоторых подходах для определения и решения этих вопросов, а также поговорим о том, кто отвечает за качество данных.

ДАННЫЕ С ОШИБКАМИ

Ошибки могут появиться в данных по многим причинам и на любом этапе сбора информации. Давайте проследим весь жизненный цикл данных с момента их генерации и до момента анализа и посмотрим, как на каждом из этапов в данные могут закрадываться ошибки.

В данных всегда больше ошибок, чем кажется. По результатам одного из исследований[23], ежегодно американские компании терпят ущерб почти в 600 млн долл. из-за ошибочных данных или данных плохого качества (это 3,5 % ВВП!).

Во многих случаях аналитики лишены возможности контролировать сбор и первичную обработку данных. Обычно они бывают одним из последних звеньев в длинной цепочке по генерации данных, их фиксированию, передаче, обработке и объединению. Тем не менее важно понимать, какие проблемы с качеством данных могут возникнуть и как их потенциально можно разрешить.

Цель этой части книги — выделить общие проблемы с качеством данных и возможные подводные камни, показать, как избежать этих проблем и как понять, что эти проблемы присутствуют в наборе данных. Более того, чуть позже вы поймете, что это призыв ко всем специалистам, работающим с данными, по возможности активно участвовать в проверке качества данных.

Итак, начнем с самого начала — с источника данных. Почему в данные могут закрасться ошибки и как с этим бороться?

ГЕНЕРАЦИЯ ДАННЫХ

Генерация данных — самый очевидный источник возможных ошибок, которые могут появиться в результате технологического (приборы), программного (сбои) или человеческого факторов.

В случае технологического фактора приборы могут быть настроены неправильно, что может сказаться на полученных данных. Например, термометр показывает 35 °C вместо 33 °C на самом деле. Это легко исправить: прибор или датчик можно настроить по другому, «эталонному», прибору, отражающему достоверные данные.

Иногда приборы бывают ненадежными. Мне довелось работать в грантовом проекте Агентства передовых оборонных исследовательских проектов Министерства обороны США (DARPA), посвященном групповой робототехнике. В нашем распоряжении была группа простейших роботов, задача которых заключалась в совместном картографировании местности. Сложность состояла в том, что инфракрасные датчики, установленные на роботах, были очень плохого качества. Вместо того чтобы сосредоточиться на разработке децентрализованного алгоритма для нанесения здания на карту, большую часть времени я потратил на работу с алгоритмическими фильтрами, пытаясь справиться с качеством информации от этих датчиков, измерявших расстояние до ближайшей стены или до других роботов. Значения сбрасывались, или показатель расстояния до ближайшей стены мог неожиданно измениться на целый метр (неточность > 50 %), притом что робот оставался неподвижным. Информации от этих датчиков просто нельзя было верить.

Когда в сборе данных принимают участие люди, ошибки в данных могут появиться по самым разным причинам. Сотрудники могут не знать, как правильно пользоваться оборудованием, они могут торопиться или быть невнимательными, они могут неправильно понять инструкции или не следовать им. Например, в двух больницах могут по-разному измерять вес пациентов: в обуви и без обуви. Для исправления ошибок такого рода требуются четкие инструкции и обучение персонала. Как с любым экспериментом, необходимо попытаться контролировать и стандартизировать как можно больше этапов процесса, чтобы данные оставались максимально достоверными, сравнимыми и удобными в использовании.

вернуться

23

Eckerson W. Data Warehousing Special Report: Data Quality and the Bottom Line (Chatsworth, CA: 101communications LLC, 2002), 34. URL: http://download.101com.com/pub/tdwi/Files/DQReport.pdf