Причина, по которой пропущены данные, чрезвычайно важна. (Далее мы воспользуемся терминологией из области статистики, хотя она и ужасна.) Необходимо изучить, являются ли данные:
MCAR
Пропуски совершенно случайны, например распределяемый случайным образом трафик веб-сервера.
MAR
Пропуски случайны, но есть закономерности. Пропущенные данные — это функция от наблюдаемых, непропущенных данных, например веб-сервер, обслуживающий определенный регион, результатом чего стало уменьшение размера выборки почтовых индексов.
MNAR
Пропуски неслучайны, а пропущенные данные — функция других пропущенных данных, например недовольные покупатели и их ответы на опрос. Это наиболее опасный случай, где присутствует серьезная необъективность.
Чем ниже по списку, тем больше у вас может возникнуть сложностей и тем меньше шансов справиться с ситуацией.
Самое важное — понимать, что может послужить источником необъективности. В некоторых случаях можно намеренно ввести ограничения или проследить влияние на показатели. Как ни странно, бывают даже такие необычные ситуации, при которых пропущенные предвзятые данные могут не оказать никакого влияния на показатели.
Когда я преподавал статистику, то приводил следующий пример, чтобы показать свойства медианного значения. Есть такой необычный спорт — голубиная гонка. Владельцы почтовых голубей отвозят своих питомцев за сотни миль от дома, выпускают, а затем мчатся домой и ждут их возвращения. Так как это «гонка», то по возвращении каждого голубя фиксируется время, за которое он долетел до дома: например, голубь номер шесть вернулся через два часа три минуты, голубь номер одиннадцать — через два часа тринадцать минут и так далее. Неизбежно некоторые голуби не возвращаются: возможно, они сбились с курса или стали жертвой хищников. Мы не можем вычислить среднее время возвращения всех птиц, так как по некоторым из них нет данных. При этом, если больше половины вернулись, можно вычислить медианное значение времени полета. Нам известна величина выборки, известна продолжительность времени полета более половины участников выборки, мы знаем, что все пропущенные данные будут меньше значения последней прилетевшей птицы. Таким образом, мы вполне можем вывести медианное значение: оно будет достоверным с этим набором пропущенных данных. Иногда выбор правильных показателей может спасти ситуацию (выбору системы показателей посвящена глава 6).
Еще одна распространенная проблема — дублирование данных. Это означает, что одна и та же запись появляется несколько раз. Причины могут быть разными: например, предположим, у вас десять файлов, которые нужно внести в базу данных, и вы случайно загрузили файл номер шесть дважды, или при загрузке файла возникала ошибка, вы остановили процесс, устранили ошибку и повторили загрузку, но при этом первая половина данных загрузилась в вашу базу дважды. Дублирование данных может возникнуть при повторной регистрации. Например, пользователь прошел регистрацию несколько раз, указал тот же самый или другой адрес электронной почты, в результате чего у него появилась другая учетная запись с той же самой персональной информацией. (Звучит просто, но подобная неопределенность может оказаться весьма коварной.) Дублирование информации также может возникнуть в результате того, что несколько приборов фиксируют ее по одному событию. В исследовании медицинских ошибок, о котором шла речь ранее, в 35 % случаев причиной ошибки был неправильный перенос данных из одной системы в другую: иногда данные терялись, иногда дублировались. По данным госпиталя Джонса Хопкинса, в 92 % случаев дублирование информации в их базе данных происходило в момент регистрации стационарных больных.
Когда речь идет о базах данных, есть несколько способов предотвратить дублирование. Наиболее эффективный — добавление ограничений в таблицу с базой данных. Вы можете создать составной ключ, который определяет одно или несколько полей и делает запись уникальной. После добавления этого ограничения у вас будет появляться оповещение, если вводимая комбинация данных совпадет с уже существующей в таблице. Второй способ — выбор варианта загрузки данных по принципу «все или ничего». Если в момент загрузки данных обнаруживается проблема, происходит откат на изначальные позиции, а новая информация в базе данных не сохраняется. Это дает шанс разобраться с причиной проблемы и повторить процесс загрузки данных без дублирования информации. Наконец, третий (менее эффективный) подход — выполнять две операции при загрузке: первая операция — SELECT, чтобы выяснить, не присутствует ли уже такая запись, вторая операция — INSERT, добавление новой записи.