Выбрать главу

Ключевую роль играет создание соответствующей корпоративной культуры. Это многосторонняя программа, включающая качество данных и обмен информацией, прием на работу и обучение аналитиков, коммуникацию, аналитическую организационную структуру, разработку показателей, A/B-тестирование[1], процессы принятия решений и многое другое. Эта книга поможет пролить свет на все эти понятия благодаря доступным объяснениям и наглядным примерам из целого ряда производственных отраслей. Кроме того, здесь приводятся практические советы и рекомендации от лидеров в области анализа и обработки данных. Надеюсь, эта книга вдохновит читателей на то, чтобы переориентировать свою деятельность и начать руководствоваться данными.

Более того, на протяжении всей книги подчеркивается важная роль, которая отводится самым разным специалистам в области обработки и анализа данных. Я убежден, что компанию с управлением на основе данных и соответствующую корпоративную культуру можно и нужно развивать не только сверху вниз — от руководства на места, — но и снизу вверх. Как отметил на форуме 2014 года Chief Data Officer Executive Forum руководитель направления по анализу и обработке данных компании Trulia Тодд Холлоуэй, «лучшие идеи подают сотрудники, наиболее тесно работающие с данными». Они не только напрямую имеют дело с источниками данных и способны оценить их качество и повлиять на него, не только понимают, как лучше всего их дополнить, но также «часто подают хорошие идеи по поводу товаров». Кроме того, они могут помочь повысить уровень знаний других сотрудников компании в этой области. Частично это происходит благодаря тому, что они развивают свои навыки и активно применяют их для качественного выполнения работы. Другая причина в том, что у них лучше развито предпринимательское мышление: они умеют задавать правильные вопросы и формулировать бизнес-проблемы, а затем убеждать в своих выводах и рекомендациях тех, от кого зависит принятие решения, предлагая им веское обоснование, какое влияние на бизнес способны оказать эти выводы и рекомендации.

А влияние и выгоды могут быть весьма заметными. Согласно результатам одного из отчетов[2], в котором контролировались и другие факторы, в компаниях с управлением на основе данных производительность была на 5–6 % выше, чем в тех, что не практикуют подобное управление. К тому же в компаниях первой категории были выше показатель использования ресурсов, коэффициент рентабельности капитала и рыночная стоимость. Согласно данным другого отчета[3], возврат на каждый вложенный в проведение аналитики 1 долл. составляет 13,01 долл. Управление на основе данных окупается!

Ориентацию на использование данных можно представить в виде непрерывного процесса: компания всегда может повысить свой уровень управления на основе данных, улучшить качество собираемых данных и аналитического процесса, провести больше тестирований. Более того, всегда можно усовершенствовать качество процесса принятия решений. В этой книге мы обсудим отличительные черты эффективных компаний с управлением на основе данных. Мы остановимся на инфраструктуре, навыках, корпоративной культуре, необходимых для создания компании, где к данным относятся как к основному активу и используют их для принятия бизнес-решений. Кроме того, мы рассмотрим некоторые примеры поведения, которое, наоборот, мешает бизнесу максимально эффективно использовать получаемые данные.

Таким образом, цель этой книги — вдохновить специалистов по анализу и обработке данных в компаниях эффективно выполнять свои функции, время от времени делать паузу, чтобы ответить на вопросы, максимально ли использует компания свои данные и можно ли делать это еще эффективнее. Еще одна цель — стимулировать обсуждение: для каких еще целей возможно применение этого ключевого ресурса. Никогда не рано думать об этом. Основатели компании и руководство высшего звена должны постараться внедрить принципы управления на основе данных на самых ранних этапах развития организации. Давайте узнаем больше о том, что эти принципы собой представляют.

вернуться

1

Метод маркетингового исследования, суть которого заключается в том, что контрольная группа элементов сравнивается с набором тестовых групп, в которых один или несколько показателей были изменены, для того чтобы выяснить, какие из изменений улучшаю целевой показатель. Прим. ред.

вернуться

2

Brynjolfsson E., Hitt L. M. and Kim H. H. Strength in Numbers: How Does Data-Driven Decisionmaking Affect Firm Performance? Social Science Research Network (2011). URL: http://ebusiness.mit.edu/research/papers/2011.12_Brynjolfsson_Hitt_Kim_Strength in Numbers_302.pdf.

вернуться

3

Nucleus Research. Analytics pays back $13.01 for every dollar spent. O204 (Boston, MA: Nucleus Research, 2014), 5. URL: http://nucleusresearch.com/research/single/analytics-pays-back-13-01-for-every-dollar-spent/.