Выбрать главу

В своей книге Building Data Science Teams[38] Ди Джей Патиль отмечает:

Легко сделать вид, что вы действуете на основании анализа данных. Но если на самом деле собирать и измерять все доступные вам данные и думать о том, что означают собранные вами данные, вы намного опередите все те компании, которые лишь заявляют об управлении на основе данных.

Собирайте все доступные данные. Никогда не знаешь, какая информация может понадобиться, а шанс собрать данные часто выдается только один, и вы будете кусать локти, когда поймете, что нужная вам информация больше недоступна. Чем больше данных вы соберете, тем больше вероятность, что вам удастся смоделировать и понять поведение пользователей (как в примере с процессом оформления и оплаты заказа) и, что более важно, понять контекст их действий. Контекст — наше все. Таким образом, чем лучше компания поймет своих покупателей, их вкусы, намерения, желания, тем успешнее ей удастся улучшить пользовательский опыт своих клиентов благодаря персонализации, рекомендациям или совершенствованию сервиса, что будет способствовать возникновению так называемого длинного хвоста[39].

При разработке онлайновых продуктов сбор абсолютно всех данных нельзя считать чем-то уникальным. Вы контролируете источник данных: сбор информации относительно одной какой-то характеристики может проводиться с помощью того же самого или похожего механизма, что и сбор информации относительно другой характеристики. То есть существует возможность использования общих шаблонов, потоков данных и механизмов хранения. Компания, в которой действительно уделяется большое внимание данным, вероятно, будет характеризоваться более широким горизонтом мышления. В такой компании все остальные функции также окажутся организованы на основе данных: маркетинг, продажи, обслуживание клиентов, цепочка поставок, работа с персоналом. Если по каждому из этих направлений имеется набор внутренних и внешних источников данных в разных форматах, с разным временем ожидания, проблемами с качеством данных, с разными требованиями к безопасности и соответствия нормативам и так далее, то это начинает превышать возможности команды специалистов по работе с данными. Это тот случай, когда «собирать все что можно» звучит как отличная идея, которая оборачивается серьезной «головной болью», когда доходит до дела.

Более того, этот процесс требует финансовых затрат. Чем больше данных, тем лучше[40] (см. приложение А, где приведены примеры и объяснение, почему это так), но какую цену компания за это платит? На создание инфраструктуры для сбора, очистки, трансформации и хранения данных нужны средства. Компания несет издержки на поддержание работоспособности этой инфраструктуры, резервное копирование данных, интеграцию источников этих данных для обеспечения целостной картины бизнеса. Кроме того, возможны значительные дальнейшие издержки на обеспечение качественного инструментария для специалистов по анализу данных, чтобы они могли максимально эффективно использовать эти несопоставимые источники данных. Компании не обойтись без всего этого, если она стремится, чтобы правильные данные попали в руки специалистов по анализу.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ БОЛЬШИХ ДАННЫХ

Специалисты по большим данным выделяют три аспекта сбора и обработки большого количества данных: объем, разнообразие и скорость[41].

Объем

Объем данных напрямую влияет на издержки на их хранение и изменения. Хотя абсолютно верно, что расходы на хранение данных снижаются экспоненциально[42] (сегодня хранение информации обходится в 0,03 долл. за GB по сравнению с примерно 10 долл. за GB в 2000 году), число доступных источников данных повысилось настолько значительно, что это перекрывает снижение затрат на хранение информации.

Разнообразие

Это еще один важный аспект данных. С одной стороны, разнообразный набор источников способен обеспечить более богатый контекст и более полную картину. Таким образом, прогноз погоды, данные по инфляции, сообщения в социальных медиа могут оказаться весьма полезными для понимания продаж ваших продуктов. При этом, чем разнообразнее тип данных и источники данных (CSV-файлы из одного источника, объекты JavaScript (JSON) из другого источника, почасовой прогноз погоды отображается здесь, а данные о запасах — здесь), тем выше будут издержки на интеграцию. Довольно сложно собрать все данные вместе, чтобы получить общую картину.

вернуться

39

Anderson C. The Long Taiclass="underline" Why the Future of Business Is Selling Less of More. New York: Hachette Books, 2005. Издана на русском языке: Андерсон К. Длинный хвост. Эффективная модель бизнеса в Интернете. М.: Манн, Иванов и Фербер, 2012. Прим. ред.

вернуться

40

Fortuny E. J. de, Martens D. and Provost F. Predictive Modeling with Big Data: Is Bigger Really Better? Big Data 1, no. 4 (2013): 215–226. URL: http://online.liebertpub.com/doi/full/10.1089/big.2013.0037

вернуться

41

Впервые встречается у Д. Лейни. 3D Data Management: Controlling Data Volume, Velocity and Variety. Application Delivery Strategies by META Group Inc., February 6, 2001. URL: http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf