Выбрать главу

Попытаемся определить содержание понятия «ситуация». В большинстве корректных употреблений этого слова его семантика связана с тремя понятиями «субъект», «действие» и «условия». Ситуация для кого-то ситуация «складывается», кто-то «создал» ситуацию и так далее… В то же время, в состоянии может пребывать и субъект и объект… Более того, состоянием субъект может управлять практически неограниченно, а вот ситуацией — только опосредованно, через среду и других субъектов. Большинство словарей определяет слово «ситуация», ставя его в один ряд со словами «обстоятельства», «обстановка», подчеркивая тот факт, что ситуация — это нечто внешнее по отношению к субъекту. Что же получается?

Ситуация — это состояние системы более высокого порядка, нежели данная, рассматриваемая. В отношении последней приемлемо употребление термина «состояние». Состояние и ситуация имеют различный временной масштаб. Ситуация является более протяженной во времени, нежели состояние и, в общем случае, имеет довлеющий над состоянием характер.

Поэтому в связи с решением задачи прогнозирования следует говорить о задачах распознавания состояний (применительно к объекту прогноза) и ситуаций (применительно к системе более высокого уровня, определяющей поведенческие особенности объекта прогноза). Но поскольку ситуация — это тоже состояние, но только состояние системы более высокого уровня, для краткости мы будем употреблять словосочетание «распознавание состояния», не делая акцента на уровне системы. По содержанию эти процедуры очень близки и отличаются только носителем состояния.

Качество решения задачи распознавания определяется тем, насколько качественно решена задача формализации признаков и критериев распознавания, и построения системы эталонов. Поскольку нам не дано иной альтернативы для снижения размерности задачи, речь идет о построении дискретной картины мира (тех его фрагментов, знание состояния которых важно для решения задачи) в виде формальных признаков. Более того, специфика большинства методов ситуационного анализа заключается, прежде всего, в том, каким способом осуществляется формализация признаков, и их выделение из общего потока данных. Один из подходов к решению задачи распознавания ситуаций излагается ниже.

Ранее нами рассматривались различные способы представления и отображения данных (а значит, и способы задания эталонов для распознавания). Анализ кибернетического подхода к решению задачи распознавания образов позволил выдвинуть гипотезу о возможности применения технологии дискретного масштабирования образов, широко используемой в отношении графических объектов, к анализу ситуаций. Это становится возможным, поскольку ситуация с точки зрения кибернетики предстает в таком же дискретном виде, как и графические объекты при решении задачи распознавания. В отношении знаковых систем, с помощью которых человек выражает свои мысли, это утверждение тем более справедливо (знаки по своей природе дискретны). При распознавании графических образов достаточно широко используются методы прореживания точек в геометрическом пространстве. Когда же речь идет о распознавании ситуации, аналогичное прореживание возможно в некотором пространстве признаков, описывающих состояние некоторой системы.

Таким образом, переход от дискретного масштабирования образов объектов к дискретному масштабированию образов ситуаций вполне логичен. Автоматически возникают следующие вопросы: «Правомерно ли рассматривать множество признаков, как множество равно значимых для решения задачи распознавания элементов?», «Существуют ли пути автоматизации процесса прореживания точек в пространстве признаков?», «Как и какую метрику можно ввести в таком пространстве признаков?». Ответы на эти вопросы подсказывает все та же теория распознавания образов. Ответы, если расположить их по порядку, таковы: «Не правомерно», «Существуют (при специфической организации пространства признаков)», «Метрика должна вычисляться на основе анализа иерархии, упорядочивающей однотипные признаки». Иными словами, пространство признаков должно быть построено по иерархическому принципу, определяющему параметры алгоритма отсеивания менее информативных признаков. В этом случае процесс масштабирования эталона или образа ситуации до некоторого момента не будет приводить к потере существенных для распознавания черт ситуации. В области ситуационного анализа эти технологии, идеи которых были заложены еще в 1950-е, нашли применение лишь в конце 1980-х — начале 90-х годов.

При обработке изображений теория распознавания образов пошла дальше — с целью преодоления недостатков обычной растровой (построчной, поэлементной) дискретизации изображения были разработаны технологии векторизации контурных изображений по совокупности опорных точек. Это стало возможно благодаря дальнейшей математизации кибернетики и внедрению высокопроизводительной вычислительной техники. При использовании технологии векторизации контурное изображение, считываемое в режиме растрового сканирования, подвергается анализу с целью дальнейшего представления в виде совокупности фрагментов кривых, описывающихся примитивными функциями. Полученная в результате выполнения таких процедур совокупность математических описаний в дальнейшем позволяет осуществлять масштабирование контуров в обоих направлениях без потерь.