Цель этого параграфа – разобраться в том, при решении какого именно класса текстовых задач алгебраический метод должен в начальной школе уступать место арифметическому методу.
С точки зрения педагога арифметический метод хорош тем, что он одновременно активизирует и наглядно-образное мышление ученика, и его логику. Алгебраический метод обычно быстрее ведет к цели, но в значительно меньшей степени нацелен на развитие мышления в широком смысле этого слова.
Решая задачу арифметическим способом, младший школьник, как правило, оперирует именованными числами, что соответствует наиболее развитому у него типу мышления – наглядно-образному.
В то же время решение задач алгебраическим способом минимизирует нагрузку на наглядно-образное мышление ребенка, решение текстовой задачи в основном сводится к оперированию символами. Научить ребенка такому оперированию, безусловно, важно. Однако, здесь имеются «подводные камни». Дело в том, что при решении некоторых задач, у детей происходит утрата понимания смысла производимых ими математических действий, и задача перестает выполнять свою развивающую функцию, превращается в рутинный «пример». Рассмотрим в этой связи две задачи, предлагавшиеся третьеклассникам, обучавшимся по системе Л.Г. Петерсон.
Задача А. Мышка и птичка (игрушечные) вместе стоят 10 рублей. 5 мышек и 6 птичек стоят 56 рублей. Сколько стоят мышка и птичка по отдельности?
Решение 1 (арифметическое).
1) Сколько комплектов игрушек (мышка плюс птичка) можно составить из 5 мышек и 6 птичек? – 5 комплектов.
2) Сколько стоят эти 5 комплектов игрушек? 5·10 = 50 (руб.)
3) Сколько птичек останется без мышек? – Одна.
4) Сколько стоит 1 птичка? 56 – 50 = 6 (руб.)
5) Сколько стоит одна мышка? 10 – 6 = 4 (руб.)
Ответ: мышка стоит 4 рубля, птичка стоит 6 рублей.
Решение 2 (алгебраическое). Пусть x – цена мышки, y – цена птички. Тогда система из двух уравнений, соответствующая задаче А, должна была бы содержать именованные величины и иметь вид
x + y = 10 (руб.), 5x + 6y = 56 (руб.)Фактически же, математические преобразования обычно проводят над системой, в которой имена величин опускаются; в данном случае – над системой
x + y = 10, 5x + 6y = 56. (*)
Умножая первое уравнение системы (*) на 5 и вычитая его из второго, получаем y = 6, а затем из первого уравнения находим x = 4. Теперь в ответе имена величин вспоминают:
Ответ: мышка стоит 4 рубля, птичка стоит 6 рублей.
Заметим, что действия при решении алгебраической системы (*), в сущности, те же, что и при решении этой задачи арифметическим способом. Как показывает наш опыт, дети в состоянии объяснить смысл каждого преобразования в процессе решения системы (*) на языке наглядных образов. В результате решение, полученное алгебраическим способом, способствует закреплению и упорядочению знаний, служит связующим звеном между наглядно-образным и абстрактным (символьным) мышлением. Рассмотрим теперь другую известную задачу (см., например [5]).
Задача Б. Десять мышек и птичек (птички и мышки настоящие, не игрушечные) съели 56 зерен. Каждая мышка съела 5 зерен, а каждая птичка – 6 зерен. Сколько было мышек и сколько птичек?
Решение (алгебраическое). Пусть x – число мышек, y – число птичек. Составляем соответствующую задаче Б систему уравнений, содержащих именованные величины:
x + y = 10 (животных), 5x + 6y = 56 (зерен). Опуская имена величин, приходим к системе
x + y = 10, 5x + 6y = 56. (**)
Решая ее, получаем: x = 4, y = 6.
Ответ: 4 мышки, 6 птичек.
Система (**) формально совпадает с системой (*) и решается тем же способом, что и система (*). Однако, как показывает наш опыт, дети, решив сначала задачу А алгебраическим способом и дав своему решению правильное истолкование на языке наглядных образов, затруднялись объяснить смысл аналогичных преобразований системы (**). Некоторые говорили так: «Нужно взять пять комплектов животных и вычесть их из 56 зерен…» Причина затруднений, очевидно, была в том, что уравнения системы (**), в отличие от системы (*), содержат величины разных наименований.
На наш взгляд, на начальном этапе обучения область применения алгебраического метода должна быть ограничена текстовыми задачами, решение которых не приводит с системам, содержащим величины разных наименований.
4. МЫСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРИ РЕШЕНИИ ТЕКСТОВЫХ ЗАДАЧ