Conmy knows that sometimes athletes feel as if they just have to respond to the abuse. “If they’re going to do it, once they’ve done it, I’d like them to get centered as quickly as possible on what they’re doing, which is playing the game, whatever game that may be.” Getting centered will also help you deal with the annoying driver behind you or the annoying music in the supermarket.
Unfortunately for Zidane, after the outburst there was no more game to center on. Yet on some level, he must have felt good to have shut Materazzi up. That’s because there’s a little more to this than simply having something get between you and your goal. The whole point of a sport is that you have another team full of people who are actively working to keep you from your goals, and that’s not annoying. They’re supposed to be doing that. You expect them to be doing that, but you don’t expect a plague of midges to join them.
A lineup of pesky Cleveland hitters could have been predicted. It’s only when you find your world—and your expectation of how you might move through it—suddenly out of sync with your reasonable assumptions that things become annoying.
6. Who Moved Their Cheese?
On any given day, there are some eight hundred thousand mice living on campus at the Jackson Laboratory in Bar Harbor, Maine.
You wouldn’t know it to look at the place. As you drive up to the bucolic campus on Route 3, less than a mile from downtown Bar Harbor, it’s not as if you see tiny white critters darting among the trees. If you sniff carefully and are familiar with the smell, you can get a faint odor of a laboratory animal-care facility, but that’s it. The cluster of buildings and lawns could pass for a small college campus or maybe a midsize independent research institute (which it is) but not a place that harbors hundreds of thousands of rodents. Nonetheless, if you want to know just about anything about a mouse, from how its immune system works to how its genes control the number of teeth it has to what really ticks it off, the Jackson Lab is a good place to come.
The lab was founded in 1929 by a scientist named Clarence Cook Little, better known as C. C. Little. He was an interesting character from an old Boston family and a direct descendant of Paul Revere.
While he was a graduate student at Harvard, Little wrote a paper proposing that genetics was a crucial factor in whether a transplanted organ would be rejected. The paper was published in Science.{29} At the time, no one knew that someday there would be organ transplants, but Little’s work laid the groundwork for understanding organ rejection.
When Little was in his twenties, he also began to develop strains of genetically inbred mice. Inbred strains are useful, because each mouse from a particular inbred strain is genetically identical to every other mouse from that strain. You can transplant skin or an internal organ between mice of the same strain, and because their immune systems are identical, there will be no rejection. If you test a particular drug or treatment on mice of one inbred strain, any variability that you see as a consequence can’t be blamed on genes. Something else has to be the cause. Having this kind of genetically level playing field has been extremely useful for researchers. Some of the strains of mice that Little developed are still being used by researchers today.
In 1922, at the astonishingly young age of thirty-three, Little became president of the University of Maine and three years later got the same gig at the University of Michigan. At Michigan, Little demonstrated quite an ability to irritate people. He annoyed the university regents and the governor with his outspoken views on birth control (he was for it), euthanasia (he was for it), and eugenics (he was for that, too). His tenure as university president lasted only a few years.
If he got under the skin of his higher-ups, he nevertheless managed to befriend some of nearby Detroit’s wealthy industrialists. When Little left Michigan, he even convinced Edsel Ford and Roscoe B. Jackson, the president of the Hudson Motorcar Company, to bankroll the new institute he wanted to build to study mouse genetics.
Today, the lab employs some twelve hundred scientists, technicians, and administrative staff, most of whom are involved in some way or another with probing the mouse genome. The lab scientists don’t work with all eight hundred thousand rodent residents. Many of the mice are supplied to researchers at other institutions.
There’s a surprising amount of security at the lab, especially for the building where most of the mice are housed. It’s not so much that scientists are worried about theft or escape. A bigger worry is that animal rights activists will try to break in and wreak havoc. Lab officials insist that the main reason for the security is to protect the mice from humans who may be carrying diseases that could be harmful to the rodents. Once a year, however, the lab does let humans view the mice, and that’s during what’s called the Mouse Clinic.
The clinic is part of the two-week summer course on mammalian genetics that the lab has conducted for the last half-century. Senior genetics researchers from around the world agree to teach at the course, partly because the Jackson Lab is a good place to hobnob with colleagues in mammalian genetics, and partly because Bar Harbor can be spectacularly beautiful in the summer. (It can also be rainy and foggy for days on end, causing you to curse the vacation brochure that convinced you to spend your entire two-week holiday there.)
Graduate students and recently minted Ph.D.’s attend the course, and the Mouse Clinic is one of the highlights. In it, the lab brings out examples of its most interesting mouse strains, and scientists at the lab explain their research to the course participants. The clinic takes place in a parking lot next to one of the lab buildings under a large tent, a hundred feet long and forty feet across. There are about two dozen tables under the tent, and on every table are several clear plastic boxes, each a bit larger than a shoe box and containing a different strain of mouse. You can easily see the mice inside the boxes. Some are brown, others are white. One mouse even has a green glow if you shine ultraviolet light on it.
In some boxes there is only one mouse; others hold several. All of these mice at the clinic have one thing in common: “They’re not very happy,” says Peggy Danneman. Danneman is a senior veterinarian specializing in lab animal medicine. She says there are several reasons for these mice to be pissed off. First of all, mice detest open spaces. Yes, there’s a tent, but the tent has no walls, and for a mouse, this is about the same as being plopped down in the middle of the great outdoors.
“Mice want to be close to a wall or sheltered,” says Danneman. Even though there’s no threat to these mice in their protective plastic cages, historically, a mouse out in the open is a mouse in trouble. That’s because just about every larger carnivore wouldn’t mind munching on a tasty mouse snack. “You see the same thing with bright lights,” says Danneman. “Mice do not like bright lights, and I would postulate it’s for the same reason.” Bright lights would make them easier to spot. Although there’s no direct sunlight inside the tent, it’s plenty bright. While these things may be temporary and unpredictable, for a mouse, they could cross from unpleasant into genuinely dangerous (as far as they can tell). Yet that’s just the beginning of the assault on mouse sensibilities that the Mouse Clinic represents.
Mice hate being put in a freshly cleaned box, and these boxes are spotless. “Humans change the cage because it starts to smell, and they don’t like it,” says Eva Eicher, one of the lab’s star geneticists. “But the mouse would probably prefer to have the cage a little dirtier and changed a lot less often.”