Сейчас не ясен механизм, приводящий в действие эту динамо-машину. Возможно, это тепловой механизм. Тогда не требуется различия в состоянии вещества во внутреннем и внешнем ядре, но необходим источник энергии. Таковым может быть распад радиоактивных изотопов, например урана-238. Другая гипотеза основывается на гравитационном механизме работы динамо-машины. В этом случае причина течений в ядре, вызываемых гравитационным механизмом, – различие плотностей: более тяжелые части ядра опускаются, более легкие поднимаются, кристаллизуются во внешнем ядре, уплотняются и вновь опускаются вниз, поддерживая процесс гравитационной конвекции.
Как бы то ни было, изучение внешнего магнитного поля, в том числе полярных сияний, дает ключ к познанию внутреннего строения Земли, в частности ее ядра. Изучение магнитных силовых линий и их проявлений лучше всего проводить в полярных областях. Здесь силовые линии наиболее сконцентрированы, меньше всего подвержены искажению солнечным ветром. Только здесь наблюдаются полярные сияния.
В полярных странах удобно наблюдать и космические лучи, и вариации их потока в связи с вариациями межпланетного магнитного поля и солнечными хромосферными вспышками. Отмечено, например, что после начала солнечной вспышки интенсивность полярных сияний резко падает и через 2–3 мин они вовсе исчезают, однако в фазе максимума вспышки появляются вновь. Такие интересные явления и многие другие проливают свет как на внутреннее строение Земли, так и на многие космические явления.
С вариациями магнитного поля связано распространение радиосигналов. Этот вопрос имеет большое практическое значение для деятельности человека на всей планете.
Для исследования магнитного поля большую роль играет советская станция Восток, расположенная вблизи Южного геомагнитного (материкового) полюса. Станция Молодежная находится в зоне полярных сияний. Накопился большой объем наблюденных данных. Обнаружены две области аномально быстрого изменения вариаций магнитного поля и линия нулевых изменений магнитного склонения, которая оставалась постоянной в течение 145 лет. Это означает, что все указанное время вдоль этой линии проходил дрейф Южного геомагнитного полюса со скоростью около 12 км/год. По-видимому, дрейф носит периодический характер и происходит по замкнутой траектории с периодом около 4000 лет.
Вообще магнитное поле Антарктиды испытывает большие вариации и сильно аномально. Так, различия в вертикальной составляющей напряженности магнитного поля даже на малых (порядка 10 км) расстояниях могут достигать 800 мА/м.
Установлена зависимость магнитных возмущений от солнечной активности. Выявлен интересный факт постоянства зоны максимальной магнитной возмущенности в дни спокойного солнца. Сопоставление явлений полярных сияний с состоянием магнитного поля показало, что полярные сияния наблюдаются при спокойном магнитном поле. Они почти не возникают при возмущениях и магнитных бурях.
Изучение магнитного поля Антарктиды, т. е. вблизи ее Южного полюса, очень важно для познания взаимосвязи атмосферных явлений на Земле с солнечной активностью и космическим излучением. В этой области еще много неясного и в то же время важного для жизнедеятельности человека.
Изучение магнитного поля, его постоянной составляющей и вариаций важно и для познания недр Антарктиды. Мы уже рассказывали, как с помощью палеомагнетизма удалось прочитать древнюю историю материка и его связи с другими частями Гондваны. Локальные магнитные аномалии указывают на наличие намагниченных горных пород в самых верхних слоях коры, таких, как железная руда, железистые кварциты и некоторые другие. Изучение этих аномалий помогает разведке запасов полезных ископаемых и формированию представлений о строении верхних слоев земной коры континента.
Магнитные аномалии часто связаны с поверхностью кристаллического фундамента, глубины залегания которого можно рассчитать по изменениям магнитного поля. В этом большую роль играет комплексирование магниторазведочных работ с гравитационной разведкой. Комплексирование методов позволяет уменьшить неоднозначность решения задачи и вычислить глубины залегания структур, вызвавших аномалии, и даже порой определить их вещественный состав.
Сейсмичность. Сейсмические методы исследований
До начала Международного геофизического года, т. е. до 1956 г., в южных полярных областях никогда не проводились сейсмические наблюдения. В 1956 г. начала работать сейсмостанция Мирный, в 1957 г. – Оазис Бангера, с 1962 г. – станция Новолазаревская. В это же время был организован ряд сейсмостанций других стран. Работают сейсмостанций на всех основных обсерваториях в Антарктиде: Мак-Мердо, Литл-Америка, Уилкс, Сева, Дюмон-Дюрвиль и др.
В задачи работы этих станций входят изучение сейсмичности континента и окружающих акваторий, исследование строения земной коры Антарктиды, наблюдение за микросейсмами и объяснение их природы, наконец, изучение динамических процессов в ледниковом покрове Антарктиды. Это задачи стационарных сейсмических работ. Кроме того, сейсмические методы применяются для измерения толщины льда и изучения геологических структур. Но это несколько иной аспект. На нем остановимся позже.
По длительным стационарным наблюдениям в Антарктиде установлены два интересных факта.
Антарктида – континент асейсмический. Она представляет собой древнюю консолидированную платформу, так называемый кратон, в котором устоялись все тектонические процессы и нет оснований ожидать сейсмической активности. Было зарегистрировано несколько незначительных землетрясений. Наиболее крупное произошло 15 октября 1974 г. в Трансантарктических горах вблизи побережья моря Росса. Его магнитуда была 4,9, глубина очага 33 км, т. е. это мелкофокусное землетрясение. Вблизи этого места находится и упоминавшийся ранее вулкан Эребус, извержение которого наблюдал в январе 1841 г. Джеймс Росс.
В 1982 г. 4-го ноября было зарегистрировано значительное землетрясение на самом континенте, на Земле Королевы Мод, в 1200 км от побережья в точке с координатами 81°20 ю. ш. и 37° в. д. Магнитуда его-4,5. Точность определения положения эпицентра ±10 км. В районе эпицентра толщина льда достигает 3000 м, а высота подледного ложа около 500 м. Землетрясение зарегистрировано пятью станциями в Антарктиде и четырьмя внешними. Явление это для Антарктиды уникальное. Однако аналогичное землетрясение было зарегистрировано в сентябре 1983 г. Эпицентр этого землетрясения расположен в 200 км от береговой линии Земли Уилкса. Магнитуда 4,5. Таким образом, заключение об асейсмичности, возможно, преждевременно.
Сейсмический пояс Антарктики приурочен к зонам альпийской молодой складчатости, расположенной далеко в океане вокруг Антарктиды. Этот пояс соединен с главными сейсмическими поясами земного шара. Так, от о. Маккуори к западу Тихоокеанский сейсмический пояс соединяется через Австрало-Антарктическое поднятие с сейсмическим поясом Индийского океана и далее, через Африкано-Антарктический океанический хребет с Атлантическим сейсмическим поясом. Наличие эпицентров землетрясений между Южно-Антильским и Африкано-Антарктическим хребтами (о-ва Буве, Южные Сандвичевы) указывает на связь Тихоокеанского и Атлантического сейсмических поясов. Юго-западная часть Тихоокеанского пояса соединяется через Южно-Тихоокеанский хребет с Южно-Американским сейсмическим поясом. Так что асейсмичная Антарктида окружена активным сейсмическим поясом. В этом можно усматривать проявление процесса раскола Гондваны. Сейсмические пояса одновременно являются областями разрастания океанического дна и раздвижения литосферных плит.
Наблюдения за скоростями прохождения сейсмических волн далеких землетрясений и их отражениями от различных плотностных горизонтов позволяют вычислить мощность земной коры.