После летнего курса я остался на несколько недель сентября, чтобы завершить начатый проект. Он позволил получить потрясающие электронно-микроскопические изображения электрорецепции[91] скатов[92]. Скаты и акулы способны воспринимать очень слабые электрические поля; их рецепторы настолько чувствительные, что они могут обнаружить сигнал от 1,5-вольтовой батарейки у другого берега Атлантического океана. Скаты могут применять это шестое чувство для навигации, используя слабые электрические сигналы от своего движения через магнитное поле Земли, которое генерирует микровольтовые сигналы в их электрорецепторах.
Однажды, когда я фотографировал в подвале студенческого общежития Loeb Hall, мне неожиданно позвонил Штефан Куффлер, основатель факультета нейробиологии в Гарвардской медицинской школе. Куффлер — легендарная персона в нейробиологии. Он предложил мне работать в его лаборатории, что изменило мою жизнь. Я переехал в Бостон сразу, как окончил аспирантский проект у Алана Гельперина по фиксированию метаболической активности в педальном ганглии Limax maximus, большого придорожного слизня[93]. Я никогда больше не смогу съесть улитку, не думая о ее мозге. Алан отошел от нейроэтологии, цель которой — изучение нейронных основ поведения. Я узнал, что так называемая более простая нервная система беспозвоночных на самом деле более сложная, так как они выживают с гораздо меньшим количеством нейронов, каждый из которых узкоспециализированный.
В лаборатории Куффлера я изучал передачу сигнала в синапсе симпатического ганглия лягушки-быка — в 60 тысяч раз более медленную, чем быстрая миллисекундная синаптическая передача в коре ее мозга (рис. 4.5)[94]. Это нейроны, которые формируют выход вегетативной нервной системы, регулирующей работу желез и внутренних органов. После стимуляции нерва, ведущего к синапсу, вы успеете сходить за кофе и вернуться до того, как синаптический вход в нейрон достигнет пика, что произойдет примерно за минуту, а затем ему потребуется десять минут, чтобы восстановиться. Синапсы — фундаментальный вычислительный элемент в мозге, и разнообразие типов синапсов говорит о многом. Этот опыт показал мне, что упрощение, возможно, не лучший путь к пониманию работы мозга.
Выяснить, как работает мозг, было не единственной задачей, а целым набором задач, давно решенных эволюцией и передающихся от вида к виду вверх по эволюционной лестнице. В нашем мозгу есть ионные каналы, которые впервые появились в бактериях миллиарды лет назад.
Рис. 4.5. Клетка симпатического ганглия лягушки-быка. Эти нейроны получают входные сигналы от спинного мозга и раздражают железы в коже лягушек. Они большие, их электрические сигналы легко регистрировать с помощью микроэлектрода (внизу), у них нет дендритов[95], и их можно электрически стимулировать нервом (вверху) или химическими веществами (верхняя пара микропипеток). Стимулирование нерва вызывает три различных синаптических сигнала со скоростью нервной реакции в несколько миллисекунд, как и в нервно-мышечном соединении, однако она проходит медленнее, достигает максимума через десять секунд и длится минуту. Самый поздний ответ на возбуждение выходит на пик через минуту и длится десять минут. Это иллюстрирует широкий диапазон временных масштабов, которые присутствуют даже в простейших нейронах.
Недостающее звено
Итак, если физический подход оказался слишком простым, а биологический — слишком сложным, то где же искать оптимальный вариант? В отличие от физических факторов, у схем мозга и моделей нейронных сетей есть цель — решение жизненно важных вычислительных задач, таких как зрительное восприятие и перемещение. Безусловно, можно найти идеальную модель того, как работает нейрон, но это не скажет вам, какова его цель.
Нейроны участвуют в процессе обработки сигналов, несущих информацию, и именно вычисления были недостающим звеном в попытке понять природу. Я шел к этому 40 лет, осваивая новое направление — вычислительную нейробиологию.
91
Электрорецепция — способность животных ощущать электрические сигналы окружающей среды.
92
Sejnowski T. J., Yodlowski M. L. A Freeze-Fracture Study of the Skate Electroreceptor, Journal of Neurocytology, 11, 897–912, 1982.
93
Sejnowski T. J., Reingold S. C., Kelley D. B. Gelperin, A. Localization of [3H]-2-Deoxyglucose in Single Molluscan Neurones, Nature, 287, 449–451, 1980.
94
Kuffler S. W., Sejnowski T. J. Peptidergic and Muscarinic Excitation At Amphibian Sympathetic Synapses, Journal of Physiology, 341, 257–278, 1983.