Учим играть в покер
Безлимитный техасский холдем «один на один» входит в число самых популярных разновидностей покера. В нее обычно играют в казино, а также на главном состязании — Мировой серии покера. Покер сложен, потому что, в отличие от шахмат, где оба игрока владеют одинаковым объемом информации, у игроков в покер информация неполная. Поэтому при игре на высоком уровне умение блефовать и вводить в заблуждение не менее важно, чем сами карты.
Рис. 1.7. Безлимитный техасский холдем «один на один». Пара тузов на руках. Блеф на высоких ставках был освоен системой DeepStack, которая победила профессиональных игроков с большим отрывом.
Джон фон Нейман, математик, создавший математическую теорию игр и заложивший основы архитектуры вычислительных машин, был очарован покером, так как «реальная жизнь вся состоит из блефа, маленьких хитростей и размышлений, что другой человек думает о том, что собираюсь сделать я. Игры в моей теории как раз такие». Покер отражает ту часть человеческого интеллекта, которая была усовершенствована в процессе эволюции. К величайшему удивлению экспертов в покере, сеть глубокого обучения DeepStack сыграла 44 852 игры против 33 профессиональных игроков в покер и победила их на четыре стандартных отклонения[28]. Невероятный успех. Победу над лучшими игроками при использовании даже одной стратегии уже можно было бы назвать прорывом. Если это достижение применить и в других сферах человеческой деятельности, где решения принимаются при отсутствии полной информации, например в политике и международных отношениях, последствия могут быть далеко идущими[29].
Учим играть в го
В марте 2016 года кореец Ли Седоль, чемпион мира по го, сыграл матч против AlphaGo — программы, обученной этой игре (рис. 1.8)[30]. AlphaGo использовала нейросеть глубокого обучения, чтобы оценить расположение камней на доске и возможные ходы. Го сложнее шахмат, как шахматы сложнее шашек. Если шахматы — одно сражение, то го — война. Доска для игры в го размером 19 на 19, что значительно больше, чем шахматная доска 8 на 8 клеток. В го возможно одновременно вести несколько битв на разных частях доски. В игре есть множество нюансов, поэтому судить ее порой сложно даже экспертам. Существуют 10170 возможных позиций, что больше, чем количество атомов в наблюдаемой Вселенной.
AlphaGo применяла несколько нейросетей глубокого обучения для оценки ситуации на доске и выбора наилучшего хода. Кроме того, у нее совершенно другая система обучения, использовавшаяся для решения задач, в которых необходимо вычислить, какие действия приведут к успеху, а какие — к неудаче. Если я выигрываю в го, какие мои действия способствовали этому? А если проигрываю, какой шаг был неверным? Часть человеческого мозга, которая отвечает за решение таких задач, — базальные ганглии. Они получают проекции сигналов с коры головного мозга и передают их обратно. AlphaGo использует алгоритмы, которые применяются базальными ганглиями для вычисления наиболее успешной последовательности действий. Об этом подробно будет рассказано в главе 10. Таким образом, AlphaGo училась, играя с собой раз за разом.
Рис. 1.8. Матч между Ли Седолем и AlphaGo. Доска во время матча из пяти игр между корейским чемпионом и нейросетью, которая научилась играть сама.
Результат матча в го, когда AlphaGo обыграла Ли Седоля, сильно повлиял на население Азии, где чемпионы по го — едва ли не национальные герои, подобно рок-звездам. Ранее AlphaGo обыграла чемпиона Европы, но сама по себе игра была не очень высокого уровня, поэтому Ли Седоль не ожидал столкнуться с серьезным соперником. Даже DeepMind, компания, создавшая AlphaGo, не ожидала такой сильной игры. С момента последнего матча AlphaGo сыграла сотни миллионов игр с разными своими модификациями, и едва ли можно выразить словами, насколько хороши были эти партии.
Для многих стало потрясением, когда AlphaGo выиграла первые три игры из пяти, продемонстрировав высокий уровень игры (рис. 1.9). Это было захватывающее зрелище в Южной Корее, которое обозревали комментаторы самых известных телеканалов. Некоторые ходы AlphaGo были поистине революционными. Ее 37-й ход во второй партии был настолько потрясающим, что Ли Седолю понадобилось десять минут для ответного хода. AlphaGo проиграла четвертую партию, и этим человеческий интеллект хоть немного отстоял свою честь. Тем не менее матч закончился со счетом 4:1 в пользу AlphaGo. Я наблюдал за ним в предрассветные часы в Сан-Диего, словно загипнотизированный. Это напомнило мне события 2 июня 1966 года, когда я смотрел по телевизору, как роботизированный космический корабль Surveyor приземлился на Луну и прислал первую фотографию ее поверхности[31]. Я стал свидетелем исторического события. AlphaGo совершила то, что было для нас за гранью возможного.
28
Moravčík M., Schmid M., Burch N., Lisý V., Morrill D., Bard N., Davis T., Waugh K., Johanson M., Bowling M. «DeepStack: Expert-level artificial intelligence in heads-up no-limit poker». Science. 356: 508–513 2017. Стандартное отклонение — это половина ширины колоколообразной кривой. Только 16 процентов выборок больше одного стандартного отклонения от среднего. Только один из десяти миллионов образцов имеет более четырех стандартных отклонений от среднего значения.
30
Silver David; Huang Aja; Maddison Chris J.; Guez Arthur; Sifre Laurent; Driessche George van den; Schrittwieser Julian; Antonoglou, Ioannis; Panneershelvam Veda (2016). «Mastering the game of Go with deep neural networks and tree search». Журнал Nature. 529 (7587): 484–489.
31
«Surveyor-1» приземлился на поверхность Луны 2 июня 1966 года в 6:17:36 UT. Место посадки находилось на равнинной территории в 100-километровом кратере к северу от кратера Флемстид.