Выбрать главу

В основном энергия, запасенная в АТФ, используется для нужд клетки. Однако у некоторых организмов химическая энергия может превращаться в световую в процессе биолюминесценции.

Ключевая роль цикла Кребса в метаболизме клетки

Рассмотрев фундаментальные принципы обмена веществ в природе, мы не будем останавливаться на особенностях метаболизма липидов, аминокислот, нуклеотидов и многих других соединений, которые изучает биохимия – одна из важнейших биологических дисциплин. В заключение отметим интегральную роль цикла Кребса в метаболизме клетки.

Цикл Кребса выступает в роли центрального метаболического пути углерода практически всех организмов на Земле. Он является ключевым звеном как катаболических, так и анаболических процессов.

Продукты распада жиров, белков и других веществ поступают из цитоплазмы, превращаются в ацетил-СоА и также вовлекаются в цикл Кребса, как и в рассмотренном выше процессе распада углеводов.

Промежуточные продукты цикла Кребса могут выходить из цикла на разных стадиях и использоваться в качестве предшественников в биосинтезе самых различных соединений, т. е. включаться в анаболический процесс. Однако их выход должен сочетаться с продолжением катаболической активности, необходимой для анаболизма.

Таким образом, цикл Кребса – это важнейший процесс в жизнедеятельности клетки. Свое название он получил в честь английского биохимика Г. Кребса (1900–1981) – лауреата Нобелевской премии 1953 года.

Глава 3. Генетическая информация

Носителями наследственной информации в природе являются нуклеиновые кислоты. Именно они выполняют три необходимые для жизни функции: хранение, воспроизведение и реализацию этой информации. В ходе эволюции ключевая роль по хранению и воспроизведению генетической информации перешла к молекуле ДНК. РНК участвует в процессах реализации информации.

3.1. Воспроизведение и реализация генетической информации

Генетическая информация в клетке воспроизводится в процессе репликации ДНК. Реализация генетической информации происходит через процессы транскрипции и трансляции. Все эти три процесса получили в биологии название матричных, поскольку в них одна молекула служит «матрицей» (образцом) для синтеза другой.

Репликация ДНК

Репликацией называется процесс удвоения молекул ДНК. Уникальная способность ДНК к самоудвоению определяет ее ключевую роль в живом организме. Репликация лежит в основе воспроизведения себе подобных живыми организмами, что является главным признаком жизни.

Начинается репликация с локального участка молекулы ДНК, где двойная спираль ДНК раскручивается, разрываются водородные связи между нуклеотидами соседних цепей и цепи расходятся. Такая структура получила название «репликативная вилка». К образовавшимся свободным связям каждой цепи присоединяются (под действием фермента ДНК-полимеразы) по принципу комплементарности (А – Т, Г – Ц) свободные нуклеотиды, находящиеся в клетке. Этот процесс идет вдоль всей молекулы ДНК. Поскольку у каждой дочерней молекулы ДНК одна нить происходит от материнской молекулы, а другая является вновь синтезированной, данная модель репликации получила название полуконсервативной (рис. 3.1).

Рис. 3.1. Полуконсервативный принцип репликации ДНК

Две новые молекулы ДНК представляют собой точные копии исходной молекулы. Полуконсервативный механизм репликации ДНК столь же универсален в природе для воспроизведения генетического материала, как и сама ее структура.

Транскрипция

Транскрипцией называется процесс переноса генетической информации с ДНК на РНК. Матрицей для синтеза РНК служит только одна из двух нитей ДНК (так называемая смысловая цепь). Транскрипция происходит не на всей молекуле ДНК, а на участке одного гена. Ген – это участок ДНК, несущий информацию об одной полипептидной или полинуклеотидной цепи. Помимо генов, несущих информацию о структуре белков, имеются гены с информацией для синтеза р-РНК и т-РНК.