Выбрать главу

Если не смешивать иллюстрации и существо апории, то можно утверждать, на наш взгляд, что апории Ахилл и Дихотомия симметричны по отношению к друг другу. В самом деле, Дихотомия также водится к следующим трем утверждениям:

(0) Каков бы ни был отрезок [A B], движущееся от А к В тело должно побывать во всех точках отрезка [A B].

(1) Любой отрезок [A B] можно представить в виде бесконечной последовательности убывающих по длине отрезков [bn+1 bn]… [b3 b2] [b2 b1]… [b1 B].

(2) Поскольку бесконечная последовательность bi не имеет первой точки, невозможно побывать в каждой из точек этой последовательности.

Таким образом, апория Ахилл основывается на тезисе о невозможности завершить движение из-за необходимости посетить последовательно каждую из точек бесконечного ряда, упорядоченного по типу ω (т. е. по типу порядка на натуральных числах), который не имеет последнего элемента. В свою очередь Дихотомия утверждает невозможность начала движения из-за наличия бесконечного ряда точек, упорядоченных по типу ω* (так упорядочены целые отрицательные числа), который не имеет первого элемента.

Проанализировав более тщательно две приведенные апории, мы обнаружим, что обе они опираются на допущение о непрерывности пространства и времени в смысле их бесконечной делимости. Такое допущение непрерывности отличается от современного, но имело место в древности. Без допущения тезиса о том, что любой пространственный или временной интервал можно разделить на меньшие по длине интервалы, обе апории рушатся. Зенон прекрасно это понимал. Поэтому он приводит аргумент, исходящий из принятия допущения о дискретности пространства и времени, т. е. допущения о существовании элементарных, далее неделимых, длин и времен.

Стадий

Итак, допустим существование неделимых отрезков пространства и интервалов времени. Рассмотрим следующую схему, на которой каждая клетка таблицы представляет неделимый блок пространства. Имеется три ряда объектов А, В и С, занимающих по три блока пространства, причем первый ряд остается неподвижным, а ряды В и С начинают одновременное движение в направлении, указанном стрелками:

Ряд С, утверждает Зенон, за неделимым момент времени прошел одно неделимое место неподвижного ряда А (место А1). Однако за то же самое время ряд С прошел два места ряда В (блоки В2 и В3). Согласно Зенону, это противоречиво, т. к. должен был встретиться момент прохождения блока В2, изображенный на следующей схеме:

Но где в это промежуточное положение находился ряд А? Для него просто не остается соответствующего места. Остается либо признать, что движения нет, либо согласиться с тем, что ряд А делим не на три, а на большее количество мест. Но в последнем случае мы вновь возвращаемся к допущению о бесконечной делимости пространства и времени, снова попадая в тупик апорий Дихотомия и Ахилл. При любом исходе движение оказывается невозможным. Известный английский физик-космолог и философ Дж. Уитроу следующим образом прокомментировал сложившуюся ситуацию:

Апория Стадий, “несмотря на все ее остроумие, решается довольно просто, т. к., если пространство и время состоят из дискретных единиц, в этом случае относительные движения должны быть таковы, что переходы типа 0 → 1 – АА могут случаться в последующие моменты. Отрицание Зеноном этой возможности основывается не на логическом законе, а просто на ошибочной апелляции к “здравому смыслу”, т. к. в действительности он молчаливо предполагает постулат непрерывности, который несовместим с гипотезой, принятой в начале рассуждения. Как это ни странно, но если мы примем такие гипотезы, то движение будет представлять собой прерывную последовательность различных конфигураций, как в кинофильме, и ни в какой момент времени не будут существовать промежуточные конфигурации. Переход электрона с одной орбиты на другую рассматривается в элементарной теории атома Бора именно как переход такого типа” [8].

Мы считаем, что сказанное Уитроу верно. Промежуточное положение (0/1) с логической точки зрения вовсе не обязано наличествовать в какой-то момент времени, поскольку предположение о его отсутствии непротиворечиво [9]. Другой вопрос, что наши привычные представления о движении, опирающиеся интуицию непрерывности, оказываются неадекватными в дискретном случае. В этом отличие дискретной ситуации от ситуации с бесконечной делимостью пространственных и временных интервалов. Утверждение, что ряд ½1, ½2, ½3,…, ½n завершится, логически противоречиво, если n не ограничено. Аналогичным образом, необычная вычислительная машина Германа Вейля никогда не сможет завершить вычисления в какой-то момент времени из-за неограниченного числа шагов процесса пересчета множества натуральных чисел. Можно, используя понятие предела, просуммировать упомянутый ряд и получить единицу, или, вводя трансфинитные числа, допустить выполнение в ходе вычислений количества шагов, равного первому бесконечному числу ω. Такие построения уже будут непротиворечивыми. Но они обладают существенным, на наш взгляд, изъяном.

вернуться

8

Уитроу Дж. Естественная философия времени. М., 1964. С. 177.

вернуться

9

Увы, Анисов напрасно соглашается с Уитроу. Поставленный Зеноном вопрос абсолютно правомерен с логической точки зрения: если возможно продвижение одного тела относительно другого (в данном случае объекта В относительно объекта С) на одну “дискрету” пространства, то, следовательно, проходит некоторый интервал времени, а значит, совершенно правомерен вопрос, как изменилось и изменилось ли вообще положение объекта А относительно объектов В и С за этот промежуток времени? Если положение объекта А изменилось, то мы приходим к отмеченному Зеноном противоречию. Если же не изменилось, то движущее тело некоторый конкретный промежуток времени просто покоилось в одной точке, что само по себе противоречиво (см. апорию Летящая стрела). В квантовой механике этот вопрос решается путем постулирования максимально возможной скорости – скорости света с. Согласно этому постулированию, движущиеся друг навстречу другу со скорость с объекты приближаются друг к другу все с той же скоростью с, а не 2с, ибо никакие объекты не могут приближаться друг к другу (или удаляться друг от друга) со скоростью, большей скорости света. Но, во-первых, такое постулирование, насколько мне известно, оспаривается современными физиками, а во-вторых, оно не только не разрешает проблем движения, но и ставит новые. (Руслан Хазарзар.)