Выбрать главу

Разрядность передач согласуется аналогично посредством сообщений Wide Data Transfer Request. Согласованные режимы будут действовать до сброса устройств по сообщению Bus Device Reset или «жесткого» сброса, что приведет к установке предопределенных режимов по включению. Согласование режимов не должно инициироваться в каждом процессе, поскольку затраты времени на эту процедуру сводят на нет выигрыш в производительности.

Система команд SCSI включает общие команды, применимые для устройств всех классов, и специфические для каждого класса. Любое SCSI-устройство должно поддерживать обязательные команды общего набора и своего класса, чем обеспечивается высокий уровень совместимости. Команда передается ИУ в ЦУ через блок дескриптора команды (command descriptor block), посылаемый в фазе Command. Некоторые команды сопровождаются блоком параметров, следующим за блоком дескриптора в фазе Data. Форматы блоков стандартизованы; длина блока, определяемая кодом операции (первым байтом блока), может составлять б, 10 или 12 байт.

Рассмотрим процесс на шине SCSI на примере одиночной команды чтения Read. ИУ имеет активный набор указателей и несколько сохраненных наборов, по одному на каждый из допустимого числа одновременных конкурирующих процессов. ИУ восстанавливает указатели процесса в активный набор и, выиграв арбитраж, выбирает ЦУ. Как только ЦУ выбрано, оно берет на себя управление процессом. В фазе Selection ИУ вводит сигнал ATN#, сообщая о намерении послать сообщение Identify с указанием адресуемого ЛУ. ЦУ переходит в фазу Command и принимает блок дескриптора команды Read. Интерпретировав команду, ЦУ переходит в фазу Data IN, передает запрошенные данные, затем переводится в фазу Status и посылает состояние Good. Затем в фазе Message IN устройство посылает сообщение Command Complete, после чего освобождает шину (фаза Bus Free). Процесс завершен.

Рассмотрим тот же пример, но при условии отключения от шины (Disconnect) в процессе выполнения команды. Если устройство, получив команду Read, определит, что для получения затребованных данных необходимо много времени, оно освободит шину, послав сообщение Disconnect. Как только требуемые данные готовы в ЦУ, оно, выиграв арбитраж, выберет ИУ (в фазе Reselect) и в фазе Message IN пошлет ему сообщение Identify. ИУ вернет соответствующий набор указателей в активное состояние и продолжит выполнение процесса, как описано выше. Если ЦУ хочет отсоединиться, когда часть данных уже передана (например, головка диска дошла до конца цилиндра и требуется время на позиционирование), оно посылает сообщение Save Data Pointer, а затем — Disconnect. После повторного соединения передача данных возобновится с точки, определенной последним сохраненным значением указателя. Если произошла ошибка или исключение, ЦУ может повторить обмен данными, послав сообщение Restore Pointers или отсоединившись без сообщения Save Data Pointers.

Теперь рассмотрим процесс с цепочкой связанных команд. По успешному завершению каждой команды цепочки ЦУ автоматически переходит к исполнению следующей. Все команды цепочки являются частью одного процесса. Команды не являются полностью независимыми — при относительной адресации последний блок, адресованный предыдущей командой, доступен для следующей. Так, например, можно исполнить команду Search Data, по которой на диске будет найден блок, содержащий информацию, совпадающую с эталоном поиска. Связав с ней команду чтения Read, можно прочитать этот блок или блок с указанным смещением относительно найденного. По выполнении связанных команд ЦУ посылает сообщения Linked Command Complete (возможно, с флагом), а ИУ обновляет набор сохраненных указателей, так что они указывают на очередную команду цепочки. Команды в цепочке выполняются как одиночные, но с возможностью относительной адресации.

Команды могут исполняться с использованием очередей. ЦУ могут поддерживать немаркированные и маркированные очереди. Поддержка немаркированных очередей, определенная еще в SCSI-1, позволяет любому ЛУ (LUN) или целевой программе, занятым процессом от одного ИУ, принимать команды (начинать процесс) с другими ИУ.

Маркированные очереди (tagged queue) определены в SCSI-2 для ЛУ. Для каждой связи I_T_L (ИУ-ЦУ-ЛУ) существует своя очередь размером до 256 процессов. Каждый процесс, использующий маркированные очереди, идентифицируется связью I_T_L_Q, где Q — однобайтный тег очереди (queue tag). Теги процессам назначаются ИУ, их значения на порядок выполнения операций не влияют.

Постановка в очередь выполняется через механизм сообщений, при этом очередной процесс можно поставить в очередь «по-честному», а можно «пропихнуть» вне очереди: процесс, поставленный в очередь с сообщением Head Of Queue Tag, будет выполняться сразу после завершения текущего активного процесса. Процессы, поставленные в очередь с сообщением Simple Queue Tag, исполняются ЦУ в порядке, который оно сочтет оптимальным. Процесс, поставленный в очередь с сообщением Ordered Queue Tag, будет исполняться последним. ИУ может удалить процесс из очереди, сославшись на него по тегу. Изменение порядка выполнения команд ЦУ не касается порядка в цепочке команд, поскольку цепочка принадлежит одному процессу, а в очередь ставятся именно процессы.

Здесь мы не рассматриваем различные ситуации, приводящие к отклонениям от нормальной последовательности событий интерфейса. К ним относятся некорректные соединения со стороны ИУ, выбор несуществующего ЛУ, неожиданные выборки ИУ, округление параметров, реакция на асинхронные события и т. п.

Глава 6

Шины и карты расширения

Шины расширения (Expansion Bus) являются средствами подключения системного уровня: они позволяют адаптерам и контроллерам непосредственно использовать системные ресурсы PC — пространства памяти и ввода-вывода, прерывания, каналы прямого доступа к памяти. Устройства, подключенные к шинам расширения, могут и сами управлять этими шинами, получая доступ к остальным ресурсам компьютера (обычно к ячейкам памяти). Такое прямое управление (bus mastering) позволяет разгружать центральный процессор и добиваться высоких скоростей обмена данными. Шины расширения механически реализуются в виде слотов (щелевых разъемов) или штырьковых разъемов; для них характерна малая длина проводников, что позволяет достигать высоких частот работы. Эти шины могут и не выводиться на разъемы, но использоваться для подключения устройств в интегрированных системных платах.

В современных компьютерах основной шиной расширения является PCI; ее дополняет порт AGP. Шина ISA из настольных компьютеров уходит, но она сохраняет свои позиции в промышленных и встраиваемых компьютерах, как в традиционном слотовом варианте, так и в «бутербродном» варианте PC/104. В блокнотных компьютерах широко применяются слоты PCMCIA с шинами PC Card и Card Bus. Шина LPC является современным дешевым средством подключения нересурсоемких устройств на системной плате. Все эти шины подробно рассматриваются в данной главе. Информацию по отжившим шинам MCA, EISA, VLB можно найти в литературе [1, 2, 5].

Изготовителям карт расширения приходится точно следовать протоколам шины, включая жесткие частотные и нагрузочные параметры, а также временные диаграммы. Отклонения приводят к несовместимости с некоторыми системными платами. Если при подключении к внешним интерфейсам это ведет к неработоспособности только самого устройства, то некорректное подключение к системной шине может блокировать работу всего компьютера. Следует также учитывать ограниченность ресурсов PC. Самые дефицитные из них — линии запросов прерываний; проблема прерываний, известная по шине ISA, так и не была радикально решена с переходом на PCI. Другой дефицит — каналы прямого доступа шины ISA, используемые и для прямого управления шиной, — в шине PCI преодолен. Доступное адресное пространство памяти и портов ввода-вывода, в котором было тесновато абонентам шины ISA, в PCI существенно расширено. Проблемы распределения ресурсов на шинах решаются по-разному, но чаще всего применяется технология PnP.