Кинетическая энергия стержня:
Полная кинетическая энергия системы:
Потенциальная энергия системы:
Уравнение Лагранжа:
Эта формула аналогична формуле движения груза, подвешенного на пружине, имеющий общий интеграл .
Используя этот интеграл находим:
– период:
– частоту
– круговая частота
Если собственную массу балки не учитывать:
Т.е. к массе мешалки необходимо прибавить от веса вала.
__
Рассмотрим по методу Релея колебания двухопорной однопролетной балки (вала), нагруженной сосредоточенной силой в произвольном положении [2,с.70].
Обобщенное перемещение:
Кинетическая энергия груза:
Кинетическая энергия элемента балки dc:
Уравнение изогнутой оси балки (вала):
В точке приложения груза:
При формула имеет вид, как для предыдущего примера:
Потенциальная энергия системы:
Уравнение Лагранжа:
Для статического удлинения k необходим груз:
Находим:
– период
– частоту
– круговая частота
__
Рассмотрим по методу Релея колебания двухопорного однопролетного вала, нагруженной двумя произвольно приложенными сосредоточенными силами [2,с.76].
Ограничения метода Релея приводят систему к системе с 1 степенью свободы. При точном рассмотрении системы, она имеет множество степеней свободы.
Перемещение каждого груза:
Наибольшие перемещения грузов являются амплитудой для, для
Скорости грузов:
Максимальная скорость при
Максимальная скорость соответсвует переходу точки через статическое равновесие, т.к. фаза pt равна 0° или 180° при положении точки с на оси балки.
Скорость колебаний переменная, так как колебание происходит по закону синусоиды, например,. При изменении положения и скорости точки, меняется энергия колебания. При колебании происходит непрерывный взаимный переход кинетической энергии в потенциальную.
Сумма энергий постоянна и является полной энергией системы при рассмотрении идеального случая без потерь:
Для какого-либо конкретного положения системы:
При нахождении точки на оси абсцисс (оси вала), потенциальная энергия равна нулю, кинетическая максимальная:
Т.е. вся полная энергия системы является максимальной кинетической энергией.
Для фазы pt равной 90° или 270° кинетическая энергия равна нулю, а потенциальная энергия максимальная:
Т.е. вся полная энергия системы является потенциальной энергией.
Можно записать:
Для случая рассматриваемого груза:
Из этой формулы находится круговая частота:
Период колебаний:
___
Для трех грузов на валу, круговая частота запишется по формуле:
__
Для n грузов круговая частота запишется по формуле:
Как можно видеть, определение круговой частоты сводится к нахождению статических прогибов. Прогибы могут быть также найдены графоаналитически.
Для одного груза круговая частота запишется по формуле:
__
Рассмотрим по методу Релея колебания двухопорного однопролетного вала, нагруженной распределенной нагрузкой [2,с.81].
Мешалки являются сосредоточенной нагрузкой на валу и пример приводится для сведения.
Балка с распределенной нагрузкой условно разбивается на ряд участков с заменой распределенной нагрузки, приходящейся на каждый участок, сосредоточенной силой, приложенной по центру тяжести участка.