Выбрать главу

Утверждение 44

Всякий сферический сектор равен конусу, имеющему основание, равное поверхности сферического сегмента, соответствующего этому сектору, а высоту, равную радиусу шара.

Книга II

Архимед приветствует Досифея.

Ты уже просил меня написать доказательства для тех проблем, формулировки которых я посылал к Конону; при изложении большей части их приходится пользоваться теоремами, доказательства которых я уже послал тебе, а именно: [...]

Утверждение 3

Третья задача была такова: данный шар рассечь плоскостью так, чтобы поверхности получившихся сегментов находились бы друг к другу в отношении, равном заданному.

ОБ ИЗМЕРЕНИИ КРУГА

Утверждение 1

Всякий круг равен прямоугольному треугольнику, причем радиус круга равен одной из прилегающих к прямому углу сторон, а периметр — основанию треугольника.

Утверждение 2

Круг к квадрату со стороной, равной своему диаметру, относится, как И к 14.

Утверждение 3

Периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых частей.

О КОНОИДАХ И СФЕРОИДАХ

Утверждение 4

Всякая площадь, ограниченная эллипсом, имеет к кругу с диаметром, равным большему диаметру эллипса, то же самое отношение, что меньший диаметр эллипса к большему или к диаметру круга.

Утверждение 6

Площади, ограниченные эллипсами, находятся друг к другу в таком же отношении, как прямоугольники между диаметрами эллипсов.

Утверждение 19

Если дан сегмент какого-нибудь из коноидов, отсеченный перпендикулярной к оси плоскостью, или же сегмент какого- нибудь из сфероидов, не больший половины этого сфероида и точно так же отсеченный, то можно вписать в него объемную фигуру и описать около него другую, состоящую из имеющих равную высоту цилиндров, и притом так, чтобы описанная фигура была больше вписанной на величину, которая меньше любой наперед заданной величины.

Утверждение 21

[...] Всякий сегмент прямоугольного коноида, отсеченный плоскостью, перпендикулярной к оси, будет в полтора раза больше конуса, имеющего те же самые основания и ось, что и сегмент.

Утверждение 27

Если какую-нибудь сфероидальную фигуру рассечь плоскостью, проходящей через центр и перпендикулярной к оси,

то половина сфероида будет вдвое больше конуса, имеющего то же самое основание и ту же ось, что и сегмент.

О СПИРАЛЯХ

В книгах, которые были посланы через Гераклида, ты имеешь запись большей части тех ранее посланных Конону теорем, доказательства которых ты все время просил меня дать; в этой же книге я посылаю тебе запись некоторой части из оставшихся.

Утверждение 1

Если некоторая точка равномерно движется по какой-нибудь линии и на последней берутся две линии, то взятые линии будут иметь друг к другу то же самое отношение, что и времена, в течение которых точка прошла эти линии.

Утверждение 24

Площадь, заключенная между спиралью, описанной в течение первого оборота и первой из прямых, находящихся на начале вращения, будет третьей частью первого круга.

О РАВНОВЕСИИ ПЛОСКИХ ФИГУР

Книга I

Сделаем следующие допущения.

1. Равные тяжести на равных длинах уравновешиваются, на неравных же длинах не уравновешиваются, но перевешивают тяжести на большей длине.

2. Если при равновесии тяжестей на каких-нибудь длинах к одной из тяжестей будет что-нибудь прибавлено, то они не будут уравновешиваться, но перевесит та тяжесть, к которой было прибавлено.

3. Точно так же если от одной из тяжестей будет отнято что-нибудь, то они не будут уравновешиваться, но перевесит та тяжесть, от которой не было отнято.

Утверждение 1

Тяжести, уравновешивающиеся на равных длинах, будут тоже равны.

Утверждение 2

Неравные тяжести на равных длинах не уравновешиваются, но перевешивает большая.

Утверждение 6

Соизмеримые величины уравновешиваются на длинах, которые будут обратно пропорциональны тяжестям.

Утверждение 7

И далее, если величины будут несоизмеримыми, то они точно так же уравновесятся на длинах, которые обратно пропорциональны этим величинам.