Выбрать главу

Искусственный интеллект – это широкая область исследований, сопряженная с множеством дополнительных дисциплин. Многие из моих собеседников совмещали работу в нескольких областях. Сейчас я кратко расскажу, как опрошенные относятся к наиболее важным инновациям в исследованиях ИИ и задачам будущего. Основная информация о каждом из них будет приведена в начале соответствующего интервью.

Подавляющее большинство достижений сферы ИИ последнего десятилетия – от распознавания лиц до машинного перевода и победы в игре го – основаны на технологии глубокого обучения, или глубоких нейронных сетей. Искусственные нейронные сети, в которых программно эмулируется структура и взаимодействие нейронов головного мозга, появились примерно в 1950-х гг. Простые версии этих сетей могли решать элементарные задачи по распознаванию объектов на изображениях, что сначала вызывало сильный энтузиазм. Однако к 1960 г., частично из-за критики Марвина Минского – одного из пионеров ИИ, – нейронные сети потеряли популярность, а им на смену пришли другие подходы.

В течение примерно 20 лет, начиная с 1980-х гг., небольшая группа исследователей продолжала верить в технологию нейронных сетей и продвигать ее. Среди них выделялись Джеффри Хинтон (Geoffrey Hinton), Иошуа Бенджио (Yoshua Bengio) и Ян Лекун (Yann LeCun). Они не только внесли вклад в лежащую в основе глубокого обучения математическую теорию, но и первыми стали продвигать технологию «глубоких» сетей с несколькими слоями искусственных нейронов. Им удалось донести идею нейронных сетей до времен экспоненциального роста вычислительных мощностей и увеличения объема доступных данных. В 2012 г. команда аспирантов Хинтона из Университета Торонто победила в конкурсе по распознаванию объектов на изображениях.

После этого события глубокое обучение стало общедоступным. Большинство крупных технологических компаний – Google, Facebook, Microsoft, Amazon, Apple, Baidu и Tencent – инвестировали огромные суммы в новую технологию, чтобы использовать ее в своем бизнесе. Разработчики микропроцессорных и графических чипов (GPU), такие как NVIDIA и Intel, переорганизовали бизнес под создание оборудования, оптимизированного для нейронных сетей. Именно глубокое обучение сегодня раскрывает сферу ИИ.

Такие ученые, как Эндрю Ын (Andrew Ng), Фей-Фей Ли (Fei-Fei Li), Джефф Дин (Jeff Dean) и Демис Хассабис (Demis Hassabis), используют современные нейронные сети в таких областях, как поисковые системы, компьютерное зрение, беспилотные автомобили и универсальный ИИ. Это признанные лидеры в области преподавания, управления и предпринимательства на базе технологии нейронных сетей.

Однако глубокое обучение подвергается критике. Ряд ученых считают его «одним из инструментов в наборе», утверждая, что для дальнейшего прогресса нужны идеи из других областей. Барбара Грош (Barbara Grosz) и Дэвид Ферруччи (David Ferrucci) занимаются проблемами понимания естественного языка. Гари Маркус (Gary Marcus) и Джош Тененбаум (Josh Tenenbaum) изучают человеческое познание. Орен Этциони (Oren Etzioni), Стюарт Рассел (Stuart Russell) и Дафна Коллер (Daphne Koller) специализируются на вероятностных методах. Джуда Перл (Judea Pearl) за работу по вероятностным (или байесовским) подходам к ИИ и машинному обучению получил премию Тьюринга.

Сфера робототехники также развивается благодаря таким ученым, как Родни Брукс (Rodney Brooks), Даниэла Рус (Daniela Rus) и Синтия Бризил (Cynthia Breazeal). Бризил вместе с Раной эль Калиуби (Rana El-Kaliouby) – первопроходцы в построении систем, умеющих распознавать эмоции, реагировать на них и вступать в социальные взаимодействия с людьми. Брайан Джонсон (Bryan Johnson) основал компанию Kernel, направляющую технологии ИИ в развитие человека.

По моему мнению, особый интерес представляют три основные темы, поэтому они будут рассматриваться в каждом интервью. Первая касается автоматизации человеческого труда, ведущей к росту безработицы. Глубже всего эту тему раскрыл Джеймс Маника (James Manyika) – глава Глобального института McKinsey (MGI), где активно исследуется влияние технологий на рынок труда.

Второй вопрос, который я задавал всем, касается ИИ, сравнимого с человеческим. Это так называемый сильный ИИ (artificial general intelligence, AGI), который был недостижимой мечтой. Демис Хассабис рассказал, что предпринимается в компании DeepMind, которая является крупнейшей и наиболее финансируемой инициативой по исследованиям сильного ИИ. Дэвид Ферруччи, руководивший разработкой суперкомпьютера IBM Watson, – генеральный директор стартапа Elemental Cognition, – описал создание сильного ИИ путем эффективного применения понимания языка. Важные идеи высказал и Рэймонд Курцвейл (Raymond Kurzweil) – автор книги Singularity is Near («Сингулярность уже близка»), в настоящее время руководящий проектом Google, связанным с обработкой естественного языка.