Рисунок 2.2. Таблицы файлов, дескрипторов файла и индексов
Обычные файлы и каталоги хранятся в системе UNIX на устройствах ввода-вывода блоками, таких как магнитные ленты или диски. Поскольку существует некоторое различие во времени доступа к этим устройствам, при установке системы UNIX на лентах размещают файловые системы. С годами бездисковые автоматизированные рабочие места станут общим случаем, и файлы будут располагаться в удаленной системе, доступ к которой будет осуществляться через сеть (см. главу 13). Для простоты, тем не менее, в последующем тексте подразумевается использование дисков. В системе может быть несколько физических дисков, на каждом из которых может размещаться одна и более файловых систем. Разбивка диска на несколько файловых систем облегчает администратору управление хранимыми данными. На логическом уровне ядро имеет дело с файловыми системами, а не с дисками, при этом каждая система трактуется как логическое устройство, идентифицируемое номером. Преобразование адресов логического устройства (файловой системы) в адреса физического устройства (диска) и обратно выполняется дисковым драйвером. Термин «устройство» в этой книге используется для обозначения логического устройства, кроме специально оговоренных случаев.
Файловая система состоит из последовательности логических блоков длиной 512, 1024, 2048 или другого числа байт, кратного 512, в зависимости от реализации системы. Размер логического блока внутри одной файловой системы постоянен, но может варьироваться в разных файловых системах в данной конфигурации. Использование логических блоков большого размера увеличивает скорость передачи данных между диском и памятью, поскольку ядро сможет передать больше информации за одну дисковую операцию, и сокращает количество продолжительных операций. Например, чтение 1 Кбайта с диска за одну операцию осуществляется быстрее, чем чтение 512 байт за две. Однако, если размер логического блока слишком велик, полезный объем памяти может уменьшиться, это будет показано в главе 5. Для простоты термин «блок» в этой книге будет использоваться для обозначения логического блока, при этом подразумевается логический блок размером 1 Кбайт, кроме специально оговоренных случаев.
Рисунок 2.3. Формат файловой системы
Файловая система имеет следующую структуру (Рисунок 2.3).
• Блок загрузки располагается в начале пространства, отведенного под файловую систему, обычно в первом секторе, и содержит программу начальной загрузки, которая считывается в машину при загрузке или инициализации операционной системы. Хотя для запуска системы требуется только один блок загрузки, каждая файловая система имеет свой (пусть даже пустой) блок загрузки.
• Суперблок описывает состояние файловой системы — какого она размера, сколько файлов может в ней храниться, где располагается свободное пространство, доступное для файловой системы, и другая информация.
• Список индексов в файловой системе располагается вслед за суперблоком. Администраторы указывают размер списка индексов при генерации файловой системы. Ядро операционной системы обращается к индексам, используя указатели в списке индексов. Один из индексов является корневым индексом файловой системы: это индекс, по которому осуществляется доступ к структуре каталогов файловой системы после выполнения системной операции mount (монтировать) (раздел 5.14).
• Информационные блоки располагаются сразу после списка индексов и содержат данные файлов и управляющие данные. Отдельно взятый информационный блок может принадлежать одному и только одному файлу в файловой системе.
2.2.2 Процессы
В этом разделе мы рассмотрим более подробно подсистему управления процессами. Даются разъяснения по поводу структуры процесса и некоторых информационных структур, используемых при распределении памяти под процессы. Затем дается предварительный обзор диаграммы состояния процессов и затрагиваются различные вопросы, связанные с переходами из одного состояния в другое.
Процессом называется последовательность операций при выполнении программы, которые представляют собой наборы байтов, интерпретируемые центральным процессором как машинные инструкции (т. н. «текст»), данные и стековые структуры. Создается впечатление, что одновременно выполняется множество процессов, поскольку их выполнение планируется ядром, и, кроме того, несколько процессов могут быть экземплярами одной программы. Выполнение процесса заключается в точном следовании набору инструкций, который является замкнутым и не передает управление набору инструкций другого процесса; он считывает и записывает информацию в раздел данных и в стек, но ему недоступны данные и стеки других процессов. Одни процессы взаимодействуют с другими процессами и с остальным миром посредством обращений к операционной системе.
С практической точки зрения процесс в системе UNIX является объектом, создаваемым в результате выполнения системной операции fork. Каждый процесс, за исключением нулевого, порождается в результате запуска другим процессом операции fork. Процесс, запустивший операцию fork, называется родительским, а вновь созданный процесс — порожденным. Каждый процесс имеет одного родителя, но может породить много процессов. Ядро системы идентифицирует каждый процесс по его номеру, который называется идентификатором процесса (PID). Нулевой процесс является особенным процессом, который создается «вручную» в результате загрузки системы; после порождения нового процесса (процесс 1) нулевой процесс становится процессом подкачки. Процесс 1, известный под именем init, является предком любого другого процесса в системе и связан с каждым процессом особым образом, описываемым в главе 7.
Пользователь, транслируя исходный текст программы, создает исполняемый файл, который состоит из нескольких частей:
• набора «заголовков», описывающих атрибуты файла,
• текста программы,
• представления на машинном языке данных, имеющих начальные значения при запуске программы на выполнение, и указания на то, сколько пространства памяти ядро системы выделит под неинициализированные данные, так называемые bss[6] (ядро устанавливает их в 0 в момент запуска),
• других секций, таких как информация символических таблиц.
Для программы, приведенной на Рисунке 1.3, текст исполняемого файла представляет собой сгенерированный код для функций main и copy, к определенным данным относится переменная version (вставленная в программу для того, чтобы в последней имелись некоторые определенные данные), а к неопределенным — массив buffer. Компилятор с языка Си для системы версии V создает отдельно текстовую секцию по умолчанию, но не исключается возможность включения инструкций программы и в секцию данных, как в предыдущих версиях системы.
6
Сокращение bss имеет происхождение от ассемблерного псевдооператора для машины IBM 7090 и расшифровывается как «block started by symbol» («блок, начинающийся с символа»).