It was only well after the start of Project Goose, well after our arrival at MacGregor's farm, that the real implications of the matter became clear.
Naturally MacGregor didn't like the men and equipment settling down all about him. He didn't like being told The Goose was government property. He didn't like having his eggs impounded.
He didn't like it but he agreed to it-if you can call it agreeing when negotiations are being carried on while a machine gun is being assembled in a man's barnyard and ten men, with bayonets fixed, are marching past while the arguing is going on.
He was compensated, of course. What's money to the government?
The Goose didn't like a few things, either-like having blood samples taken. We didn't dare anesthetize it for fear of doing anything to alter its metabolism, and it took two men to hold it each time. Ever try to hold an angry goose?
The Goose was put under a twenty-four-hour guard with the threat of summary court-martial to any man who let anything happen to it. If any of those soldiers read this article, they may get a sudden glimmer of what was going on. If so, they will probably have the sense to keep shut about it. At least, if they know what's good for them, they will.
The blood of The Goose was put through every test conceivable.
It carried 2 parts per hundred thousand (0-002 per cent) of chloraurate ion. Blood taken from the hepatic vein was richer than the rest, almost 4 parts per hundred thousand.
Finley grunted. 'The liver,' he said.
We took x rays. On the x-ray negative, the liver was a cloudy mass of light gray, lighter than the viscera in its neighborhood, because it stopped more of the x rays, because it contained more gold. The blood vessels showed up lighter than the liver proper and the ovaries were pure white. No x rays got through the ovaries at all.
It made sense, and in an early report Finley stated it as bluntly as possible. Paraphrasing the report, it went, in part:
The chloraurate ion is secreted by the liver into the blood stream. The ovaries act as a trap for the ion, which is there reduced to metallic gold and deposited as a shell about the developing egg. Relatively high concentrations of unreduced chloraurate ion penetrate the contents of the developing egg.
'There is little doubt that The Goose finds this process useful as a means of getting rid of the gold atoms which, if allowed to accumulate, would undoubtedly poison it. Excretion by eggshell may be novel in the animal kingdom, even unique, but there is no denying that it is keeping The Goose alive.
'Unfortunately, however, the ovary is being locally poisoned to such an extent that few eggs are laid, probably not more than will suffice to get rid of the accumulating gold, and those few eggs are definitely unhatchable.'
That was all he said in writing, but to the rest of us, he said. That leaves one peculiarly embarrassing question.'
I knew what it was. We all did. Where was the gold coming from?
No answer to that for a while, except for some negative evidence. There was no perceptible gold in The Goose's feed, nor were there any gold-bearing pebbles about that it might have swallowed. There was no trace of gold anywhere in the soil of the area and a search of the house and grounds revealed nothing. There were no gold coins, gold jewelry, gold plate, gold watches, or gold anything. No one on the farm even had as much as gold fillings in his teeth.
There was Mrs. MacGregor's wedding ring, of course, but she had only had one in her life and she was wearing it.
So where was the gold coming from?
The beginnings of the answer came on August 16, 1955.
Albert Nevis, of Purdue, was forcing gastric tubes into The Goose-another procedure to which the bird objected strenuously-with the idea of testing the contents of its alimentary canal. It was one of our routine searches for exogenous gold.
Gold was found, but only in traces, and there was every reason to suppose those traces had accompanied the digestive secretions and were, therefore, endogenous-from within, that is-in origin. However, something else showed up, or the lack of it, anyway.
I was there when Nevis came into Finley's office in the temporary building we had put up overnight-almost-near the goosepen.
Nevis said. The Goose is low in bile pigment. Duodenal contents show about none.'
Finley frowned and said, 'Liver function is probably knocked loop-the-loop because of its gold concentration. It probably isn't secreting bile at all.'
'It is secreting bile,' said Nevis. 'Bile acids are present in normal quantity. Near normal, anyway. It's just the bile pigments that are missing. I did a fecal analysis and that was confirmed. No bile pigments.'
Let me explain something at this point. Bile acids are Steroids secreted by the liver into the bile and via that are poured into the upper end of the small intestine. These bile acids are detergentlike molecules which help to emulsify the fat in our diet-or The Goose's-and distribute them in the form of tiny bubbles through the watery intestinal contents. This distribution, or homogenization, if you'd rather, makes it easier for the fat to be digested.
Bile pigments, the substances that were missing in The Goose, are something entirely different. The liver makes them out of hemoglobin, the red oxygen-carrying protein of the blood. Worn-out hemoglobin is broken up in the liver, the heme part being split away. The heme is made up of a squarish molecule-called a porphyrin-with an iron atom in the center. The liver takes the iron out and stores it for future use, then breaks the squarish molecule that is left. This broken porphyrin is bile pigment. It is colored brownish or greenish-depending on further chemical changes-and is secreted into the bile.
The bile pigments are of no use to the body. They are poured into the bile as waste products. They pass through the intestines and come out with the feces. In fact, the bile pigments are responsible for the color of the feces.
Finley's eyes began to glitter.
Nevis said, 'It looks as though porphyrin catabolism isn't following the proper course in the liver Doesn't it to you?'
It surely did. To me too.
There was tremendous excitement after that. This was the first metabolic abnormality, not directly involving gold, that had been found in The Goose!
We took a liver biopsy (which means we punched a cylindrical sliver out of The Goose reaching down into the liver). It hurt The Goose but didn't harm it. We took more blood samples, too.
This time we isolated hemoglobin from the blood and small quantities of the cytochromes from our liver samples. (The cytochromes are oxidizing enzymes that also contain heme.) We separated out the heme and in acid solution some of it precipitated in the form of a brilliant orange substance. By August 22, 1955, we had 5 micrograms of the compound.
The orange compound was similar to heme, but it was not heme. The iron in heme can be in the form of a double charged ferrous ion (Fe++) or a triply charged ferric ion (Fe+++), in which latter case, the compound is called he-matin. (Ferrous and ferric, by the way, come from the Latin word for iron, which is 'ferrum.') The orange compound we had separated from heme had the porphyrin portion of the molecule all right, but the metal in the center was gold, to be specific, a triply charged auric ion (Au+++). We called this compound 'aureme,' which is simply short for 'auric heme.'
Aureme was the first naturally occurring gold-containing organic compound ever discovered. Ordinarily it would rate headline news in the world of biochemistry. But now it was nothing; nothing at all in comparison to the further horizons its mere existence opened up.
The liver, it seemed, was not breaking up the heme to bile pigment. Instead it was converting it to aureme; it was replacing iron with gold. The aureme, in equilibrium with chloraurate ion, entered the blood stream and was carried to the ovaries, where the gold was separated out and the porphyrin portion of the molecule disposed of by some as yet unidentified mechanism.