Выбрать главу

Рис. 3.9. Из-за сплюснутой формы Земли полярная орбита спутника отличается от эллиптической.

Если орбитальная плоскость расположена под косым углом к экваториальной плоскости Земли, то реальные траектории спутников получаются намного более сложными. Россия обычно запускает спутники на орбиту со средним наклоном к экватору около 60° (например, спутник телевизионного вещания «Молния»). При этом сама орбитальная плоскость тоже прецессирует, т. е. поворачивается вокруг земной оси. Для точного расчета их орбиты приходится отказываться от теорем Ньютона и все время учитывать неидеальную форму планеты.

Рис. 3.10. Слева — орбита ИСЗ «Молния» (спутник связи). Наклон плоскости орбиты к экватору — около 63°. При таком наклоне отсутствует поворот линии апсид, поэтому спутник на высокоэллиптической орбите всегда «висит» над одним полушарием Земли (в данном случае — над северным). Орбитальная плоскость поворачивается вокруг полярной оси. Справа — орбита типичного ИСЗ. Расстояния между витками на рисунках увеличены для наглядности.

Движение двойных звезд

Законы небесной механики описывают движение не только планет и их спутников. Задача двух тел также может быть применена к двойным звездам, которых на небе очень много, больше, чем одиночных. Солнце среди них является скорее исключением. Ближайшая к нам звезда, Альфа Кентавра, тоже двойная.

Рис. 3.11. Изменение взаимного расположения компонентов двойной звезды Крюгер 60 (вверху слева) с 1908 по 1920 гг. Фото: Йерксская обсерватория, США.

Наблюдая двойную звезду (рис. 3.11) в течение 12 лет: 1908, 1915, 1920 гг., — мы видим, как происходит орбитальное обращение: оба компонента движутся относительно друг друга.

Рис. 3.12. Движение компонентов двойной звезды; невидимый центр масс отмечен крестом.

Астрономы всегда измеряют положения близких друг к другу звезд не в какой-то единой системе координат, а просто друг относительно друга — так получается проще и точнее. Навели телескоп на одну звезду, более яркую, теперь она у нас всегда в центре отсчета (в начале координат), а вторая кружится по орбите (рис. 3.12). Но на самом-то деле они обе «бегают» вокруг общего центра масс, который невидим и поэтому навестись на него невозможно. Значит, нам надо модифицировать уравнения небесной механики, из инерциальной системы отсчета перевести в неинерциальную, связанную с одним массивным компонентом. Взяли выражения для векторов обеих скоростей и нашли их разницу, т. е. относительную скорость, — и оказалось, что она точно так же зависит от всех параметров, как и в законе Ньютона: обратно пропорциональна квадрату расстояния, только теперь в качестве параметра массы фигурирует сумма масс этих двух объектов:

Рис. 3.13. Характеристики движения двойных звезд. θ — позиционный угол; ρ — разделение (расстояние). Вверху слева — относительная орбита одной из звезд двойной системы Альфа Кентавра в системе отсчёта другой звезды.

Таким образом, при переносе системы координат в одно из тел гравитационно связанной пары все законы небесной механики сохраняются и прекрасно работают, но только при допущении, что в этом теле сосредоточена суммарная масса обоих тел, и именно эту суммарную величину мы из наблюдений можем рассчитать по форме относительной орбиты. Это не очень удобно: хотелось бы «взвесить» каждое из тел пары отдельно от другого. Редко, но иногда это можно сделать, если удается проследить, как каждое из них выписывает свою траекторию на небе. Например, известная звезда Сириус — тоже двойная, у нее есть яркий компонент (Сириус А) и тусклый спутник (Сириус B). Астрономы отследили на небе их траектории относительно центра масс, который движется практически по прямой. По соотношению расстояний звезд от центра масс нетрудно вычислить, что меньший компонент Сириуса вдвое легче более массивного.

Рис. 3.14. Движение тела m2 относительно m1 в неинерциальной системе отсчета происходит так же, как в инерциальной, при условии, что поле создает неподвижное тело M = m1 + m2.

Рис. 3.15. Траектории движения обоих компонентов звезды Сириус на небосклоне.

Вот еще интересная проблема для размышления и хорошая задачка для физиков: представим, что в Солнечной системе вдруг пропал центральный объект, Солнце. Убежать оно, конечно, не может, поэтому предположим, что оно взорвалось (вообще-то взрыв Солнца маловероятен, но отнюдь не исключен) и моментально раскидало свою массу во все стороны далеко-далеко. Вопрос: а сохранится ли Солнечная система? Или планеты разлетятся на все четыре стороны?