Рис. 3.16. Третий закон Кеплера связывает относительный орбитальный период обращения планет с относительным расстоянием до центра притяжения.
Небесная троица
До этого мы говорили только про два взаимодействующих тела, а теперь перешли к более сложной проблеме: три тела. Ну и, казалось бы, что тут такого особенного, что может измениться? Но небесные механики несколько столетий работали над тем, чтобы создать аналитическую теорию движения трех тел… Работали-работали — и доказали, что это невозможно. Аналитическая теория — это комплекс уравнений, в которые вы подставляете свои параметры и момент времени, какой вас интересует, и вычисления по ним выдают вам координаты, где ваши тела находятся и с какими скоростями они движутся.
Рис. 3.17. Существуют стационарные орбиты, по которым три тела разной массы могут двигаться бесконечно долго вокруг общего центра масс.
Но нашелся человек, Карл Зундман, который создал-таки эту теорию. Казалось бы, ура — Нобелевскую премию ему надо дать! Однако не дали, и вот почему. Он записал эти уравнения в виде бесконечных рядов, которые сходятся так медленно, что для того, чтобы рассчитать положения Луны, Земли и Солнца хотя бы на год вперед, надо просуммировать 108000000 членов. Представьте, что это за фантастическое число: всем компьютерам мира не под силу обработать такое количество данных, потому что в доступной нашему наблюдению Вселенной примерно 1088 протонов, а здесь в показателе степени миллионы! Так что хоть теория и есть, пользоваться ею совершенно невозможно.
Рис. 3.18. Движение трех тел одинаковой массы по единой «хореографической» орбите (слева). Но это движение неустойчиво, что демонстрирует результат численного расчета (справа).
Вообще-то можно найти конфигурации из трех тел, эволюцию которых можно предсказать: например, создать искусственно троицу, которая совершает периодическое движение (рис. 3.17, 3.18). И тогда посмотрел на один период — и потом копируй его на бесконечное количество последующих периодов. Недавно придумали очень изящную конфигурацию из трех тел одинаковой массы, которые будут летать друг за другом по «восьмерке» (рис. 3.18). Формально во всех этих случаях тела будут бесконечно долго повторять свой циклический путь, но движение это очень неустойчиво: стоит чуть-чуть, на мизерную величину, его нарушить — и система начнет разбалтываться и придет к хаотическому состоянию. Даже ошибки компьютерного счета приводят к тому, что траектории начинают расходиться и через несколько периодов обращения система рассыпается. А устойчивого периодического движения тел, количество которых больше двух, не бывает.
Рис. 3.19. Периодическое движение тел количеством больше двух (Alain Chenciner, 2007). Движение системы трех и более тел сравнимой массы в собственном гравитационном поле всегда неустойчиво: малейшее возмущение приводит к неограниченному разбалтыванию системы.
В общем случае реализуется такая ситуация: берем три массивных тела и отпускаем навстречу друг другу. Сближаясь, они, естественно, сильнее притягиваются друг к другу и в небольшой окрестности бурно взаимодействуют. В большинстве случаев при этом два тела объединяются в двойную систему и начинают летать по стабильным эллиптическим орбитам бесконечно долго, а третье тело уносит избыток энергии: два тела связались, а потенциальная энергия связи перешла в виде кинетической к третьему телу, которое, как из пушки, вылетает из системы (рис. 3.20). Это обычный результат гравитационного взаимодействия трех тел.
Рис. 3.20 Если встречаются вместе три тела, то лишь два из них могут образовать устойчивую систему, передав энергию своей связи третьему.
Хотя все системы из трех тел рано или поздно распадаются, время их жизни очень сильно зависит от начальной конфигурации. Например, если два тела образуют тесную двойную систему, а третье обращается на большом расстоянии от них, то оно «воспринимает» двойную систему практически как точечную массу и движется весьма устойчиво почти по кеплеровской орбите. В свою очередь, на движение тел в тесной двойной системе наличие далекого третьего тела почти не влияет. Тройные и более сложные системы такого типа называют иерархическими, в отличие от хаотических систем, в которых расстояния между всеми компонентами одного порядка. При сравнимой массе тел переход к иерархическому строению происходит, когда характерное расстояние между компонентами соседних уровней различается в 5÷10 раз. Пример четырехкратной иерархической системы дает Эпсилон Лиры, в которой четыре звезды объединены в две тесные системы, обращающиеся вокруг общего центра масс.