Improbable as it seems, Bill Henry apparently suffered beta burns from exposure to concentrated radon-222 and radon decay products on the cave floor. He recovered from this acute dose and suffered no lasting effects, as is typical of brief radiation encounters. His exposure was only on the surface and not ingested. With current knowledge and understanding of radiation exposure symptoms, his socks would have been hazmat, held with tongs.[10]
Learning can be a slow process. In the first quarter of the 20th century, we at least developed an inkling of the danger of radiation, that unique peril that bedevils all things nuclear, particularly as medical applications were developed. Eventually the practice of testing an x-ray machine by putting an arm in the beam and watching it turn red became taboo, as technicians began failing to show up for work. As radiologists began to suffer from leukemia, bone cancer, and cataracts, the procedure for taking an x-ray picture evolved into assuring the patient in no uncertain terms that this procedure was absolutely harmless, then slipping behind a lead-lined shield before pressing the START button. Still, at the time there were no government-level safety standards in place, and radiation intensity or dosage measurements had not been established.
Radium therapy was widely hailed for definite curative effects in treating cancer, the dreaded disease that killed so many people, and this was the public’s introduction to radiation by nuclear decay. Further applications of this miracle metal by enthusiastic entrepreneurs would soon lead to tragic consequences, and the two most publicized disasters would change everything. The public, scientific, legislative, and industrial perceptions of radioactivity were about to be forever carved into stone in a distinctively negative way, and it would affect our basic sense of fear to this day.
William John Aloysius Bailey, one of nine children raised by a widow in a bad section of Boston, was born on May 25, 1884. He grew up poor but bright and ambitious, beginning school at Quincy Grammar and graduating near the top of his class from Boston Public Latin, famous as a launching point for ragamuffins into the Ivy League. He did poorly on his Harvard entrance exam, but he appeared sharp of mind and had a certain intense determination, and he was accepted as a freshman in the fall of 1903. Unfortunately, the cost of being a Harvard man was more than he could bear, and he had to drop out after two years. Not to be held back on a technicality, he would always boast of a Harvard degree and to have earned a fictitious doctorate from the University of Vienna, which if asked would claim to have never heard of him.
Out of school, Bailey hit the street running. He set up an import-export business in New York City, with the master plan to be appointed as the unofficial U.S. trade ambassador to China. This didn’t happen. He bounced around a while in Europe, acquiring a worldly patina, and he wound up in Russia drilling for oil at the beginning of World War I in 1914. This proved unprofitable and life-threatening, so he made it back home, where he worked on several mechanical inventions in his workshop. Barely half a year later, on May 8, 1915, he was arrested in New York on charges of running a mail-order con out of his apartment. He had been accepting mail deposits of $600 each for automobiles to be picked up somewhere in Pittsburgh. No cars showed up, and Bailey had to spend 30 days in jail. His mistake had been trying a small number of grand thefts. Reasoning that punishment would be less likely for making a great number of petty thefts, he turned to patent medicines, researching to find what the public thought they needed most.
Brilliant at this end of commerce, he came up with Las-I-Go For Superb Manhood, guaranteed to treat the symptoms of male impotence. He was finally brought to justice for this outrageous product in May 1918 and fined $200. The interesting part of this turn of events was the active ingredient in Las-I-Go: strychnine.
Known since ancient times as a deadly poison, strychnine is a colorless crystalline alkaloid found in the seeds and bark of plants of the genus Strychnos, family Loganiaceae. It is a powerful neurotoxin, useful if you want to kill small animals and birds.[11] For a human, the lethal dose is about a tenth of a gram.[12] It affects the motor nerves in the spinal cord. Transmission of a nerve impulse requires several chemical actions, one of which is an inhibitor chemical called glycine binding to an assigned port on a nerve structure. The presence of the glycine inhibitor sets the trigger point of a nerve impulse. Strychnine overcomes the glycine and binds to its port, depriving the nerve of its set-point; and without this control, the muscle at the end of the nerve will contract at the slightest impulse. This leads to painful muscle seizures and, with a sufficient number of nerves affected, death.
However, in very low doses strychnine can act as a nerve stimulant, and I can see how Bailey, and most likely others, saw it as a clever treatment for erectile disorder. Known for both its poisonous and medicinal uses in ancient China and India, strychnine made the news in the Olympic Games of 1904, held in St. Louis, Missouri. The winner of the 24.85-mile marathon race was an American, Fred Lorz of the Mohawk Athletic Club of New York, but he was quickly disqualified after loud protests from spectators.[13] It seems that Lorz, complaining of being very tired after having run nine miles, was given a lift in his manager’s car, which completed 11 more miles of the race before it broke down. Lorz, somewhat refreshed, dismounted the stalled machine, turned to salute goodbye, and ran the remaining five miles to break the tape at 3:13:00.
Behind Lorz by 00:15:53 was Thomas Hicks, another American runner, but an English import who worked in a brass foundry in Boston. At about 10 miles from the finish, Hicks was exhausted, and he begged his trainers to let him stop running and lie down on the soft gravel for a while. “Not on your life,” he was told, and his trainers gave him a sub-lethal dose of strychnine, about a milligram, plus a shot of brandy. Feeling slightly vigorous, Hicks was able to complete a few more miles, but he collapsed and had to have another shot of strychnine. He had to be carried across the finish line by two trainers, and it took four doctors to get his heart going again so he could stagger to the podium and receive his gold medal for the marathon. Another dose of the stimulant probably would have killed him.
Arsenic, also a well-known pesticide and a favorite poison in old murder mysteries, has also been used in sublethal doses as a medicine, treating everything from syphilis to cancer. An arsenic compound is still used to treat promyelocytic leukemia, and the isotope arsenic-74 is used as a radioactive tracer to find tumors. In fact, after World War I, radium sublethal dose treatment had become the glamour field of medicine. The reality that swallowing 0.2 milligrams could kill you simply meant that it was one of the most powerful and exciting of the deadly poisons that surely would cure diseases in trace quantities. Marie and Pierre Curie set out to find the effects that minute quantities of radium would have on living cells, animals, and ultimately humans. Sensing a Nobel Prize opportunity, British researchers also launched several studies, referring to it as “mild radium therapy” to distinguish it from the more radical radium needle treatment used to kill cancer tumors.
The principle of sublethal radiation treatment can be traced to the homeopathic theories of the 19th century and even to the legendary healing powers of the great European hot springs, dating back at least to Roman times. Just bathing in certain water that bubbled out of the ground seemed to be curative, and there was always the plan to bottle some of it so you could take some of the magic home with you. The enduring mystery of the springs, however, was that bottled water seemed to lose its curative potency after a few days sealed in a bottle. Why? In 1903, with recent discoveries of radioactive elements and their decay rates, it was found that the active ingredient in European springs was radon gas with a half-life of only 3.824 days, introduced into the water underground from the decay of radium traces in the rocks. Might this alpha-particle radiation be the triggering agent that accounts for the puzzling operation of the endocrine system? Could a small radiation flux be not only beneficial, but necessary to sustain life? In 1921 Frederick Soddy received the Nobel Prize in chemistry for his work in radioisotope research, and in 1923 Frederick Banting and John MacLeod won the Nobel Prize in physiology for discovering that the hormone insulin controls the body’s transduction of energy. The seeming connection between these two hot topics, the discovery of nuclear energy release and the conversion of sugar into energy, was noticed by scientists and entrepreneurs.[14]
10
And, what happened to the dog? How did the dog, close to the ground and gulping radon through the nose, survive? How did he come out the other side of the mountain in a cavern with no cross vent? It may be that neither the cat nor the dog actually went through the cave. I think the cat faked out the dog, looking as if he were plunging into the cave, but skipping left and, under the cover of dense foliage, hot-footed around and down the mountain, never to be seen again. The dog did go in the cave, but he stopped at the strange, overpowering smell of radon. The alpha particles from radon directly activate olfactory nerve endings, without any chemical reaction, and it makes an odd “metallic” odor. Dog backed out, and the hunters, again looking through thick brush, didn’t see him leave. Dog tried to clear his nose and reacquired cat-smell. He resumed the pursuit, but by this time the cat was long gone. He wound up on top of the mountain, casting about. A report that they “sent the dog back in, and he again came out on top” is questionable. You don’t “send” a dog into a black hole stinking of radon.
11
Listen to “Poisoning Pigeons in the Park,” by Tom Lehrer, recorded live in 1959 for the album “An Evening Wasted with Tom Lehrer.”
12
Technically, the LD-50, or lethal dose with 50 percent probability, can be estimated roughly from a surprisingly small number of recorded strychnine poisonings. It ranges from 15 to 120 milligrams, administered orally.
13
Fred Lorz (1884–1914) was banned from competition for life by the judgmental Amateur Athletic Union, but he was reinstated after a sincere apology and some palm lubrication. He went on to win the Boston Marathon, cleanly, in 1905, hitting the tape at 2:28:25.
14
And the beat goes on. The concept that small doses of radiation and other toxins are not damaging to human health and are actually beneficial remains alive. It is now called “hormesis,” and serious research started decades ago continues to this day. Studies have included everything from alcoholism in roundworms to radiation victims in Japan. As a scientific pursuit, hormesis researchers are plagued by an unusually high level of controversy and rancorous debate, and any published study is subject to being summarily torn to pieces in review. At the opposite end of the belief spectrum is the “linear non-threshold” or LNT opinion, holding that any amount of radiation or toxin, no matter how small, is damaging, and there is no threshold to get under. The United States Food and Drug Administration, Environmental Protection Agency, and Nuclear Regulatory Commission are steadfastly of the LNT persuasion, and harbor no acceptance of a beneficial radiation level. Both positions, LNT and hormesis, are probably correct under definable circumstances, but the jury is still out.