Противоатомная защита береговых объектов, так же как противоатомная защита кораблей, значительно сложнее, чем защита от обычных видов оружия. Она требует проведения ряда специальных мероприятий, умелых и четких действий личного состава как в момент атомного нападения, так и при ликвидации его последствий.
При взрыве атомной бомбы береговые объекты могут подвергнуться воздействию ударной волны, светового излучения, проникающей радиации и радиоактивного заражения. Степень поражения объектов зависит от величины атомного заряда, вида взрыва, расстояния от его эпицентра, формы объектов, их размеров и прочности, а также от рельефа окружающей местности.
Самые большие разрушения береговых объектов будут наблюдаться при воздушном взрыве атомной бомбы. Наземный взрыв хотя и производит более сильные разрушения, однако на меньшем расстоянии, так как значительная часть энергии взрыва тратится на образование воронки в грунте. Поэтому военные специалисты полагают, что воздушный взрыв атомного оружия более эффективен по своему воздействию как на береговые объекты, так и на личный состав.
Наибольшую опасность для береговых объектов представляет воздушная ударная волна, распространяющаяся с большой скоростью и обладающая на определенных расстояниях сильным разрушительным действием.
В зависимости от расстояния до центра взрыва ударная волна по-разному воздействует на здания и сооружения. Те из них, которые расположены в ближней зоне, испытывают всестороннее сжатие от падающей сверху, а затем от отраженной от поверхности земли ударной волны. В этом случае преобладающее значение имеет вертикальное давление (действующее на крыши и горизонтальные покрытия). Вследствие этого характер разрушений будет зависеть в основном не от размеров сооружений и их расположения, а от прочности конструкции.
По мере удаления от эпицентра взрыва ударная волна распространяется вдоль поверхности Земли и оказывает на сооружения главным образом боковое давление, которое воздействует на вертикальные стены зданий, а не на их горизонтальные покрытия. В этом случае характер разрушений будет зависеть в основном от высоты сооружений и их расположения по отношению к фронту ударной волны.
Световое излучение, продолжающееся в течение нескольких секунд после взрыва, может вызвать пожары в зданиях и наземных сооружениях, построенных из дерева и других возгорающихся материалов, на складах топлива, смазочных масел и т. п.
Личный состав этих объектов, находящийся вне укрытия, кроме того, может подвергнуться также воздействию проникающей радиации, испускаемой в момент взрыва и последующего радиоактивного заражения.
Как показали события в Хиросима и Нагасаки, действие воздушной ударной волны на различные здания и сооружения неодинаково. В Хиросима, например, при воздушном взрыве атомной бомбы (с тротиловым эквивалентом 20 000 тонн) массивное железобетонное здание сейсмостойкой конструкции с металлическим каркасом, удаленное от эпицентра взрыва на расстояние всего около 270 метров, получило лишь незначительные повреждения (разрушены крыша, двери, оконные переплеты). Одноэтажные заводские корпуса с металлическим каркасом были повреждены на расстоянии 1200 метров, а многоэтажные промышленные и складские здания и сооружения с таким же каркасом — на удалении до 1500 метров. Бескаркасные кирпичные здания разрушались на бóльших расстояниях, чем каркасные или железобетонные. Многоэтажные бескаркасные кирпичные здания и складские сооружения получили сильные повреждения, а некоторые были разрушены на расстоянии до 1600–2000 метров от эпицентра взрыва.
Возгорание деревянных зданий от действия светового излучения наблюдалось в радиусе до 1200–1500 метров, обугливание или воспламенение отдельных элементов сооружений — на расстоянии до 2500–3000 метров. Исходя из этих данных, можно считать, что горюче-смазочные материалы, расположенные открыто на поверхности земли (не заглубленные и не обвалованные грунтом), могут воспламениться на значительном удалении от эпицентра взрыва (до 3500–4000 метров).