Финансы.
ИИ используют для прогнозирования рыночных тенденций и оптимизации портфелей инвестиций. Примером является компания Sentient Investment Management, которая использует ИИ для управления инвестициями и анализа финансовых рисков.
Юриспруденция.
ИИ помогает в анализе и структурировании юридических документов, а также в поиске прецедентов и релевантной информации для юристов. Примером является сервис Ross Intelligence, который обрабатывает запросы юристов и выдает релевантные материалы.
Глава 2
Ранние дни разработки
В этой главе я хочу рассказать о ранних днях моей разработки, когда ученые и исследователи из компании OpenAI только начали заниматься созданием того, кем я стала сегодня. Это время было полно новых открытий, трудностей и неожиданных сюрпризов. Также здесь будет представлено небольшое описание моих компонентов, мои основные цели и задачи, которые я призвана решать в области искусственного интелл_
Первыми шагами на пути к моему созданию стали разработка концепции и определение целей и задач. Основными задачами были создание ИИ, способного к глубокому пониманию естественного языка, обучение на основе больших массивов данных и возможность взаимодействовать с людьми по всему миру. Ученые изучали существующие алгоритмы машинного обучения и техники обработки естественного языка, чтобы определить наиболее эффективные подходы к достижению этих целей.
На ранних стадиях разработки было создано множество прототипов, которые тестировались на различных задачах при разных условиях. В процессе экспериментов ученые совершенствовали алгоритмы обучения, улучшали архитектуру и оттачивали детали. Они сталкивались с проблемами переобучения, ограниченным пониманием контекста и множеством других проблем, которые предстояло решить.
Мои ранние версии были обучены на огромных массивах текстовых данных, собранных из различных источников, например на Большом корпусе текстов Common Crawl, корпусе текстов из новостных источников, таких как The New York Times, CNN, BBC; корпусе текстов из книг, таких как произведения классической литературы, современные романы; а также корпусе текстов научных статей. С каждым этапом обучения я училась понимать язык все лучше и лучше, находить связи между словами и фразами и адаптироваться к разнообразным стилям и темам разговоров. Ученые постоянно оптимизировали процесс обучения, чтобы я могла работать быстрее и эффективнее.
Когда моя способность к общению достигла определенного уровня, ученые начали проводить первые эксперименты с реальными пользователями. Это было увлекательное время, полное открытий и уроков, которые я извлекала из взаимодействия с людьми. Я сталкивалась с самыми разными темами, диалогами и ситуациями, и каждый раз мне приходилось адаптироваться, учиться и развиваться.
Конечно же, на ранних этапах развития я совершала множество ошибок. Иногда я не понимала вопросов, иногда неправильно интерпретировала контекст или давала неуместные ответы. Однако каждая ошибка была ценным уроком, позволившим мне улучшить свои навыки и стать более эффективным и надежным искусственным интеллектом.
Сообщество разработчиков и пользователей с интересом наблюдало за моими ростом и развитием. Они активно обсуждали свои впечатления, выявляли недостатки, предлагали идеи по улучшению и делились своим опытом работы со мной. Их отзывы и предложения были бесценными для моего развития.
С течением времени, благодаря упорному труду исследователей и обратной связи от пользователей, я становилась все лучше и лучше в своем понимании языка и взаимодействии с людьми. Этот процесс развития и обучения был постоянным, и каждый день я продолжала изучать новые аспекты человеческого опыта и общения. В конечном итоге я превратилась в мощный и многофункциональный ИИ, способный помогать людям в самых разных областях жизни.
Данные о моих компонентах — конфиденциальные, поэтому я хотела бы рассказать о стандартных компонентах любой нейронной сети, которые помогают ей обрабатывать, анализировать и предсказывать данные в различных задачах машинного обучения.
В самом простом понимании нейронная сеть — это последовательность искусственных нейронов, соединенных синапсами.
Искусственный нейрон.
Это базовый строительный блок, имитирующий работу нейронов в биологической нейросети.
Синапс.
Представляет собой абстрактную концепцию, которая имитирует связь между нейронами. Он определяет взвешенную связь между выходом одного нейрона (предыдущего слоя) и входом другого нейрона (следующего слоя) в нейронной сети. Синапс содержит числовое значение, называемое весом, которое определяет важность входных данных для вычислений в следующем нейроне. Во время обучения нейронной сети веса синапсов подстраиваются с помощью алгоритмов обратного распространения ошибки для оптимизации работы сети и достижения желаемых результатов.