Выбрать главу

Гомановская траектория — это полет по полуэллипсу, касающемуся одновременно орбиты Земли и орбиты планеты назначения. По такой траектории полет до Венеры занимает 147 сут, а до Марса — 237 сут. И естественно, этот полет можно совершать не всегда: момент старта выбирается так, чтобы ко времени достижения КА орбиты планеты назначения последняя оказалась в той же точке, что и межпланетная станция. А при постановке более сложной задачи — когда надо вернуть назад КА — необходимо у планеты выждать, когда наступит благоприятное для старта взаимное положенне планеты и Земли.

Для Венеры такой период ожидания составляет 470 сут, для Марса — 450 сут. Поэтому перелет по гомановским траекториям требует минимального времени путешествия на Марс и обратно 968 сут, а на Венеру — 762 сут. Однако на практике все не так просто. Ведь наши рассуждения исходили из того, что орбиты планет круговые и лежат в одной плоскости. В действительности же орбиты планет являются эллиптическими, а плоскости планетных орбит наклонены к плоскости земной орбиты. Кроме того, на полет межпланетной станции влияет не только гравитационное поле Солнца, но и других планет, которые несколько искажают траекторию полета.

На выбор траектории влияет и ряд других факторов. Так, для выведения большей массы надо иметь минимальную скорость отлета с Земли. Кроме того, время полета желательно сократить до разумного минимума, и конечная скорость у планеты назначения должна быть минимальной для совершения посадки или создания спутника с наименьшими энергетическими затратами.

Для вывода КА на орбиту спутника планеты надо доставить его в заданную точку относительно планеты и затормозить до первой космической скорости для данного небесного тела. Эта доставка в заданную точку сопряжена с определенными трудностями. Так, расстояние до Солнца и планет определено не абсолютно точно, а с некоторой ошибкой (даже радиус земной орбиты вычислен с ошибкой в 250 км). Поэтому уже расчетная траектория содержит в себе ошибки. А для создания искусственного спутника планеты надо знать и точное расстояние до нее.

Все это может осуществить система космической астроориентацин и навигации. Такая система применялась на межпланетных станциях типа «Марс». С помощью оптического датчика в течение длительного времени определялось направление на центр планеты при подлете к Марсу. Другой же датчик определял расстояние до планеты по угловому размеру ее диска. Данные измерений поступали в бортовую ЭВМ, которая и рассчитывала время пролета через перицентр (т. е. момент включения двигательной установки) и расстояние до планеты. Эти же данные учитывались и при определении величины тормозного импульса.

Ведь с целью создания искусственного спутника, обращающегося вокруг Марса по круговой орбите, необходимо уменьшить скорость КА, превышающую вторую космическую скорость для этой планеты до первой космической. А при создании спутника, обращающегося по эллиптической орбите, скорость КА должна быть промежуточной между первой и второй космическими скоростями для Марса. И чем больше скорость приближается ко второй космической, тем более вытянутым будет эллипс и тем выше апогей орбиты спутника.

Для осуществления посадки КА на планету, обладающую атмосферой, задача будет аналогична предыдущей.

Сначала необходимо точно определить точку входа в атмосферу планеты. Кроме того, космическая станция подлетает к планете со скоростью, никак не меньшей второй космической, и спускаемый аппарат, продолжая пассивный полет в атмосфере планеты, может оказаться в роли обычного метеорита. Причем если спускаемый аппарат войдет в атмосферу планеты слишком круто, почти по вертикали, то участок торможения окажется очень коротким, а перегрузки чрезмерно большими. Так было, например, при входе спускаемого аппарата КА «Венера-4», когда перегрузки достигли почти четырехсоткратных, а температура окружающего воздуха — около 10 тыс. К. Если же, наоборот, КА пронзит атмосферу почти по касательной, то он на гиперболической скорости проскочит мимо планеты, почти не испытав перегрузки и не опалив себя жаром разреженной атмосферы.

Следовательно, надо выбирать узкий коридор входа. Нижняя граница коридора входа определяется допустимыми перегрузками, а верхняя — эффективным торможением в атмосфере.

Высокая температура при торможении в атмосфере заставляет подумать и о защите спускаемого аппарата от перегрева. В природных условиях при полете метеоритов в атмосфере плавится и испаряется только очень тонкий слой на его поверхности, а внутри метеорит остается холодным. Поверхность спускаемого аппарата тоже покрывают особым слоем из вещества, требующего для плавления и испарения большого количества тепла. Для этой цели могут применяться такие вещества, как карбид кремния, окись магния, углерод. В этом случае тепло от торможения оплавляет только поверхностным слой, а сам спускаемый аппарат, находящийся внутри, практически не испытывает притока тепла.

Создание защитного слоя возможно непосредственно на корпусе спускаемого аппарата. Так было выполнено, например, на первых советских кораблях-спутниках. Иное решение этой задачи было реализовано на спускаемом аппарате межпланетной станции «Венера-10». Непосредственно сам спускаемый аппарат станции таким теплозащитным слоем не защищался, хотя такая защита у него была, но только на приборном шарообразном корпусе. Снаружи же спускаемого аппарата располагалось множество различных незащищенных деталей и механизмов.

В данном случае весь спускаемый аппарат размещался в прочном шарообразном контейнере, способном после прохождения участка торможения в атмосфере освободить спускаемый аппарат. Поверхностный слой этого контейнера был выполнен из жаростойкого защитного слоя. В результате торможения спускаемого аппарата в атмосфере Венеры скорость его уменьшалась до нескольких сотен метров в секунду. Программно-временное устройство и датчики давления выдали команду на сброс защитного контейнера, по экватору которого закреплялся внутри удлиненный заряд, детонируемый от пиропатрона.

После этого шар был разрезан пополам, в верхней его части отстрелена крышка и вытянут так называемый парашют увода. С его помощью верхняя полусфера отделилась и отстала от спускаемого аппарата. Спустя некоторое время из специального контейнера, расположенного в верхней части спускаемого аппарата, была введена в действие парашютная система. Скорость спуска резко упала, нижняя полусфера отделилась и быстро ушла вниз.

Когда спускаемый аппарат на парашюте медленно спускался в атмосфере, научная аппаратура приступила к проведению исследования атмосферы (химического состава, температуры, давления, скорости ветра, освещенности, влажности и т. д.). Однако медленное снижение на парашюте в плотной и протяженной по высоте атмосфере могло затянуться на длительное время. И после проведения достаточного количества измерений с целью ускорения достижения КА поверхности планеты парашютная система была отстрелена.

Падение спускаемого аппарата стало идти со значительно большей скоростью. Причем стабилизация движения аппарата осуществлялась с помощью тормозного щитка. Образно говоря, полет КА напоминал движение волана в воздухе: тяжелая часть — сам спускаемый аппарат, а сверху тормозной щиток, напоминающий оперение волана. С возрастанием плотности атмосферы движение замедлилось и перед поверхностью составило несколько метров в секунду. Для поглощения удара спускаемый аппарат снабжался торовым амортизатором — металлической пустотелой «баранкой». Энергия удара израсходовалась на смятие оболочки амортизатора.

Однако ускоренный спуск приводит к значительному увеличению трения аппарата об атмосферу Венеры. Таким трением атмосфера могла сильно наэлектризовать отдельные части спускаемого аппарата, а электризация в естественных условиях, как правило, заканчивается разрядом. Такие разряды могли вызвать незапланированное в это время срабатывание части аппаратуры (например, подрыв пиропатронов), что приводило бы к преждевременному введению в действие отдельных механизмов. С учетом всего этого в конструкции спускаемого аппарата предусматривалась защита от электростатического разряда, а отдельные части аппарата соединялись электропроводящими материалами для нейтрализации возникающих зарядов.