Выбрать главу

Система ориентации. Космический робот — автоматический КА выполняет задачи по требованию человека и должен на выполнение научной работы смотреть, как сам человек. А что бы стал делать человек-исследователь, оказавшись в космическом пространстве? Первое — это рассмотреть окрестности, правильно выбрать интересующий объект, повернуться в его сторону. Второе — это начать его изучать (визуально или фотографируя), замеряя с помощью приборов интересующие его данные. КА тоже прежде всего должен уметь найти объект, а затем повернуться к нему объективом фотоаппарата или датчиком других научных приборов.

На Земле мы поворачиваемся, используя силу трения между ногами и земной поверхностью. Даже на скользком льду, осторожно двигаясь, проскальзывая, но все же разворачиваемся в нужном направлении. В космосе даже сверхскользкой опоры нет — для совершения поворота опереться не на что. Следовательно, приходится обходиться внутренними силами: использовать реактивные силы, возникающие при работе реактивных двигателей. Движение в космосе совершается за счет реактивных сил двигательной установки, и развороты вокруг оси производятся на основе того же принципа.

Применение реактивной силы в космосе для осуществления поворота образно можно сравнить со следующим примером. На озере или в пруду стоит лодка, приставшая бортом к пристани. Если с кормы лодки на пристань прыгнет человек, то от толчка его ноги корма отойдет и лодка будет разворачиваться. В космосе прыгает не человек, а выбрасываются через сопло продукты сгорания топлива или заранее запасенный газ. В противоположную сторону будет отходить та часть автоматического КА, где расположен микродвигатель.

В итоге КА начнет разворачиваться вокруг центра масс. Микродвигатели располагают таким образом, чтобы вращение аппарата можно было осуществить по трем взаимно перпендикулярным осям. С целью создания большего момента малой силой тяги микродвигатели располагают на выносных штангах или на концах панелей солнечных батарей.

Система ориентации автоматического КА в продолжение всего полета решает ряд задач. Если предоставить КА самому себе, то он с самого начала полета не будет оставаться в покое, а начнет беспорядочно кувыркаться. Это происходит вследствие того, что во время отделения от ракеты-носителя КА отталкивается от нескольких точек крепления. Малейшая разница в силах дает момент на закрутку: даже разница в силах трения в шариковых замках при расцепке ведет к развороту и вращению космического аппарата. Малые силы не могут сильно раскрутить тяжелый аппарат, но даже плавное, медленное вращение со скоростью несколько угловых градусов в минуту не позволит нормально функционировать целому ряду систем.

Одними из задач системы ориентации являются успокоение и стабилизация КА после отделения. Кроме того, система ориентации решает следующие задачи: поиск Солнца и приведение КА в заданное положение, поиск и ориентация на звезду, обеспечение проведения радиосвязи с помощью остронаправленной антенны, стабилизация КА для проведения коррекции, торможения или сеанса фотографирования и т. д.

Успокоение КА после отделения от ракеты-носителя можно осуществить различными методами. Стабилизация с помощью оптического датчика предполагает наличие оптического прибора, способного определить направление на источник света. Солнце в качестве источника света создает в фотоэлементе электрический ток, и при отклонении от направления на Солнце уменьшается величина тока. Ослабление сигнала анализируется логическим блоком и формирует команду на возвращение КА к прежнему положению.

Можно стабилизировать ИСЗ, используя гравитационное поле Земли. Предположим, что на орбите находится гантель — два шарообразных груза, соединенных жесткой и прочной перекладиной, более легкой, чем грузы. Через некоторое время эта гантель своей осью, проходящей через грузы, повернется к центру Земли. В таком положении ближний к Земле шар гантели будет притягиваться сильнее, чем дальний. Если же гантель займет иное положение, т. е. ось отклонится от направления на центр Земли, то возникнет вращательный момент, который пропадет только тогда, когда ось гантели будет направлена к Земле. Если КА выполнить в виде гантели, то он без дополнительных стабилизирующих устройств сам повернется осью к центру небесного тела, спутником которого является.

Существуют и другие способы стабилизации, например, с помощью давления солнечного света; гироскопическая, когда стабилизация по одной оси осуществляется вращением всего КА, и т. д. На современных КА чаще всего применяется система ориентации, использующая в качестве чувствительных элементов оптические датчики — «глаза», а исполнительными органами служат реактивные микродвигатели. В состав таких систем входят оптические датчики постоянной ориентации на Солнце, датчики точной ориентации на Солнце, датчики постоянной ориентации на звезду, прибор ориентации на Землю, блок датчиков угловых скоростей, усилители, блок автоматики пневмосистсмы и т. д.

Как уже отмечалось, в качестве чувствительных элементов служат оптические датчики-фотоэлементы, способные улавливать свет и преобразовывать его в электрический ток. На некоторых автоматических КА. например «Прогнозах», ориентация осуществляется по одной оси, направленной на Солнце. В этом случае достаточно одного датчика. ИСЗ «Прогноз» необходима только одноосная ориентация, с тем чтобы солнечные батареи освещались Солнцем. Приборы, изучающие Солнце, устанавливаются на верхней части ИСЗ и всегда освещены светилом. На противоположной стороне ИСЗ размещены приборы, предназначенные для изучения процессов, происходящих в земной магнитосфере.

Точность ориентации в этом случае может быть и невысокой — в пределах нескольких угловых градусов. Оптические датчики применимы с меньшей точностью, но с постоянной ориентацией на Солнце. С целью уменьшения расхода рабочего тела ИСЗ закручивают. Закрутка производится вокруг оси, направленной на Солнце, после выведения ИСЗ на орбиту и успокоения его. Гироскопическая стабилизация, как волчок, вращающийся на полу, длительное время удерживает ось вращения в одном направлении.

Для некоторых КА требуется более точная ориентация и по трем осям. В этом случае на КА, помимо солнечного точного датчика, ставится прибор точной постоянной ориентации на определенную звезду. Первоначально с помощью менее чувствительного солнечного датчика захватывается Солнце. Разворот КА производится исполнительными органами системы ориентации. После захвата Солнца открывается крышка звездного датчика и путем поворота вокруг оси, обращенной на Солнце, запоминаются все попадающиеся в датчик звезды. При втором обороте вращение прекращается при попадании в датчик наиболее яркой звезды (как правило, в качестве звездного ориентира иыбирается Канопус или Сириус).

Крышка у звездного датчика нужна для предохранения от засветки Солнцем и чтобы избежать порчи чувствительного элемента, настроенного на освещенность от звезды-ориентира. Ведь освещенность от Солнца, находящегося в зените, даже сквозь толщу земной атмосферы составляет 200 тыс. люкс, а освещенность от звезды — лишь доли люкса. Чувствительными элементами как в звездном, так и в солнечном датчиках являются фотоэлементы. При попадании на них света они выдают электрический ток, являющийся сигналом прекращения разворота автоматического КА.

Вокруг центрального фотоэлемента размещают несколько периферийных, и при появлении возмущающего момента, т. е. поворота КА, в одном из них появляется сигнал. Логический блок системы ориентации при появлении сигнала с помощью блока автоматики пневмосистемы даст команду на тот исполнительный орган, который возвращает солнечный или звездный «зайчик» в центральную зону. Тем самым КА с высокой точностью выдерживает заданное направление своих осей в пространстве.