Стабилизация КА в заданном положении осуществляется периодической работой исполнительных органов. В качестве последних используются микрореактивные двигатели. Рабочим телом здесь служит, как правило, сжатый газ, реже — олнокомпонентное топливо (например, перекись водорода) или двухкомпонентное самовоспламеняющееся топливо (например, диметилгидразин и азотная кислота). Доступ рабочего тела — сжатого газа в сопло микродвигателя производится с помощью электропневмоклапанов. По сигналу от блока автоматики пневмосистемы электропневмоклапан срабатывает, открывая доступ рабочему телу, а через короткий промежуток времени вновь закрывается. Для компенсации возмущающих моментов, возникающих на автоматическом КА от различных причин, электропневмоклапаны могут срабатывать многократно в зависимости от величины возмущающего момента.
Для ориентации КА применяются и другого типа двигатели, такие, как, например, ионные или плазменные. На автоматическом КА «Зонд-3» использовался плазменный двигатель, а в качестве рабочего тела — фторолоновый цилиндр, надетый на центральный электрод. При разряде от емкостной батареи, проходящем от центрального электрода на внешний корпус, испарялась незначительная часть рабочего тела. За счет высокой температуры разряда образовывалась плазма, которая выбрасывалась из двигателя со скоростями истечения до нескольких километров (~15 км) в секунду.
Развороты автоматического КА в пространстве относительно центра масс КА нужны не только для проведения сеанса научных исследований, но также и для проведения коррекции его движения по орбите. В зависимости от величины и направления погрешности выведения разворот может быть произведен практически в любом направлении.
Система ориентации обеспечивает разворот автоматического КА в заданном направлении с некоторой погрешностью. Точность ориентации в количественном отношении для тех или иных КА может быть различной. 'Так, например, для межпланетной станции «Венера» величина расхождения между заданным направлением и фактически получившимся может достигать 5 , а стабилизация, т. е. удержание КА около фактического направления, составляет (с плавными колебаниями в ту или другую сторону) до 3 .
Для КА «Астрон», предназначенного для изучения ультрафиолетового излучения звезд, такая точность мала. Для изучения таких малых объектов, как звезды, ориентация и стабилизация должна быть не хуже 1". КА «Астрон» создан на базе межпланетной станции «Венера», на которой установили ультрафиолетовый телескоп. Выполненный по схеме Кассегрена, он имеет основное зеркало диаметром 0,8 м, его вторичное зеркало поворачивается при помощи двух приводов с точностью ориентации и стабилизации (т. е. удержания звезды в фокусе телескопа) около 1". В этом ИСЗ применяется двухконтурная система ориентации: первый контур обеспечивает относительно грубое наведение КА с той же точностью, как и станцию «Венера», второй контур — точное наведение с использованием ультрафиолетового телескопа.
ИСЗ «Метеор» обладает системой ориентации, которая дает постоянное направление вертикальной оси этого КА на центр Земли (что обеспечивается датчиками инфракрасной вертикали). Успокоение ИСЗ после выведения на орбиту производится с помощью исполнительных органов — реактивных сопел, работающих в импульсном режиме на сжатом азоте. В процессе полета исполнительными органами уже являются электродвигатели-маховики, оси которых совпадают с осями ИСЗ.
В отличие от других ИСЗ в «Метеоре» панели солнечных батарей закреплены на осях и могут вращаться относительно вертикальной оси КА. Кроме того, они имеют возможность поворачиваться вокруг второй оси, перпендикулярной первой. Поворот панелей солнечных батареи осуществляется собственной системой ориентации, состоящей из оптических датчиков и электродвигателей.
Система ориентации, система терморегулирования и другие служебные системы должны функционировать слаженно, целеустремленно. Поэтому и руководит работой КА одна из важных его систем, мозг космического робота, — система управления.
Система управления. Автоматические КА, предназначенные для проведения сложной научной программы (например, для исследования планет и других небесных тел), а также имеющие многоплановые задачи, снабжаются системой управления. Она уже по своему названию предопределяет управление почти всеми системами КА и, в частности, решает такие задачи, как обеспечение угловой стабилизации и стабилизации центра масс КА при выведении его на орбиту ИСЗ, при полете по этой орбите, а также при выводе КА на траекторию полета к планете.
Так, например, система управления обеспечивает стабилизацию КА при работе корректирующе-тормозной двигательной установки в сеансах коррекции и торможения, суммирует приращение скорости для формирования главной команды на отключение корректирующе-тормозной двигательной установки. Кроме того, система управления на основе памяти ЭВМ (программы) создает разворот автоматического КА, используя исполнительные органы системы ориентации. Контроль за правильностью разворота осуществляется с помощью трехосной гиростабилизированной платформы. Все эти операции проводятся в сеансах как коррекции, так и торможения и фотографирования. Строго по меткам времени система управления выдает команды на включение различных систем КА с целью успешного выполнения маневра на орбите, производит введение различных программ в память ЭВМ, их контроль и хранение.
Система управления состоит из различных приборов и входящих в нее сложных подсистем. К ним относятся бортовые цифровые вычислительные машины, автомат стабилизации и различные подсистемы (приведения, обогрева, космической астронавигации, регулирования кажущейся скорости и т. д.). Для проведения коррекции орбиты КА предварительно, за 1 или 2 сут, проводится сеанс связи, при котором в память ЭВМ вводится программа. В ней задаются величины углов для разворота по трем перпендикулярным осям, величина скорости, получаемой КА от работы двигательной установки. Главное — вся программа жестко увязана по времени: задано время совершения разворота по той или иной оси, время окончания разворотов, точное время включения двигательной установки и целый ряд других данных, необходимых для проведения правильных и согласованных действий различных систем КА.
Во время проведения сеанса коррекции перед пуском корректирующе-тормозной двигательной установки система ориентации ориентирует КА в пространстве (по заложенной в ЭВМ программе) по угловым значениям разворотов по всем трем осям. Затем, при раскрутке роторов гироскопов, обеспечивается сохранность заданного положения автоматического КА в пространстве относительно его центра масс. При этом система ориентации отключается и стабилизация осуществляется от гиростабилизированной платформы.
Разворот КА требуется для придания двигательной установке требуемого направления для проведения коррекции. ЭВМ из своей памяти выдает в точно рассчитанное время команду на включение двигательной установки, интегратор системы управления суммирует приращение скорости и при достижении заданной всличины выдаст команду на выключение двигательной установки. Спустя некоторое время КА по программе ЭВМ вновь с помощью системы управления возвращается в первоначальное положение. Радиаторы системы терморегулирования и солнечная батарея вновь занимают правильное положение относительно Солнца.
Система управления КА на различных участках траектории полета выполняет задачи по управлению движением его центра масс, т. е. движением собственно автоматического КА — изменением скорости движения по траектории полета и изменением направления движения (коррекции траектории полета, переход с пролетной траектории на орбиту спутника планеты и т. д.). Управление же движением КА относительно центра масс (развороты и вращение КА) — это задача ориентации, и с этим как раз и справляется система ориентации.