Рис. 119
Рис. 120
Рис. 121
Рис. 122
Рис. 123
Вариантов пороговой и потенциальной функций и их разгрузки можно задать неограниченно много, соответственно и многообразие рисунков бесконечно.
Мы рассмотрели и показали лишь простейшие, элементарные рисунки, составленные из линейных элементов, — задавались фиксированная ширина зоны разгрузки и линейное распределение ее величины. Но возможны и другие варианты. Например, можно задавать, что ширина зоны разгрузки зависит от длины элементов или от значений потенциала в этой точке. От длины элемента может зависеть и степень концентрации потенциала в его вершине. Величины разгрузки соседних элементов могут быть взаимосвязаны, например, могут суммироваться. Ширина зоны разгрузки с одной стороны элемента может отличаться от разгрузки с другой. Появление бокового притока может стимулировать его появление с противоположной стороны, а может и наоборот — исключить. Потенциальный рельеф по мере своего воздымания может изменять свою общую первоначальную конфигурацию. Со временем может измениться и направление главной составляющей потенциала. Все эти варианты мы рассматривать не будем. Оставим для самостоятельного изучения и задачу о развитии в одном пространстве взаимосвязанных линейных элементов разной природы. При желании читатель, наверно, и сам сможет конструировать соответствующие этим условиям абстрактные структуры. Сейчас же вернемся к конкретным рисункам.
Паутины трещин
Этот раздел посвящен структурам разрывного типа. Поверхностные трещины в непосредственной близости от себя полностью разгружают напряжения в направлении, перпендикулярном трещине, а в параллельном направлении — лишь частично. В первом приближении при упругом поведении среды степень разгрузки в этом направлении можно охарактеризовать величиной коэффициента Пуассона. Если растягивать брусок, то одновременно с этим он становится тоньше. Коэффициент Пуассона показывает отношение этих деформаций. Теоретически он не может превышать 0,5. Это значит, что разгрузка напряжений возле трещины в направлении, параллельном ей, не может превышать 50% от первоначальных напряжений. Разброс этой величины у разных материалов относительно небольшой, обычные значения — 0,25—0,35. Минимальные значения у кварцевого стекла — 0,17, а значения, близкие 0,5, наблюдаются у гелей (это, например, обычный студень или желе). Гель — жидкость, запечатанная в тонкий упругий каркас. А жидкость объемно несжимаема, поэтому коэффициент Пуассона у гелей почти 0,5. Шкала узкая — 0,17—0,5. Но эти различия для рисунка структуры могут быть важными. При микронеоднородности среды трещина неровная, на ее берегах возникают локальные участки концентрации напряжений. В этом случае при малом значении коэффициента Пуассона у берега трещины в перпендикулярном ей направлении напряжения почти не разгружены, и за счет концентрации напряжений на сколах трещины от нее могут отходить боковые притоки, т. е. возможен вариант ветвящейся структуры. Если же этот коэффициент близок к 0,5, то трещины будут редко подходить одна к другой и полосы между параллельных трещин будут разбиваться поперечными только при сильном дополнительном наращивании напряжений. В итоге могут возникнуть структуры, близкие к рассмотренным выше идеализированным структурам, у которых элемент вблизи себя разгружает потенциал во всех направлениях — вплоть до спиралей (см. рис. 94—100).
На материалах со средними значениями коэффициента Пуассона возможно и то, и другое. Но обычно боковые притоки отходят от трещин лишь на их крутых поворотах, а трещины, заходящие в зону разгрузки другой трещины, часто вязнут и не доходят до нее. Это главные особенности взаимоотношения трещин отрыва. И еще — одна трещина не может пересечь другую.
Анализ абстрактных рисунков мы начали с рисунков, появившихся в резко анизотропном поле. Примером развития рисунка трещин усыхания в таком поле может быть обычная сырая доска, лежащая под лучами жаркого солнца. На ней из-за резкой анизотропности прочностных свойств будут развиваться только продольные трещины. Если ту же доску бросить в костер и дать ей обуглиться, то на поверхности угля мы можем увидеть тетрагональные сетки трещин, соответствующие схеме, изображенной на рис. 71, 72, а схемы рис. 78—80 можно наблюдать на срезе бревна. То есть степень анизотропности древесного угля меньше, чем продольного среза дерева. Такие же рисунки, как на схемах 71, 72, мы можем увидеть и на комбинированных средах (доска, покрытая слоем старой масляной краски). Здесь анизотропность доски задает направление генеральных трещин на краске, они идут вдоль волокон дерева. Но если мы будем рассматривать трещины на узких окрашенных деревянных брусках, то здесь генеральные трещины будут идти поперек древесных волокон, потому что грани бруска разгружают поперечные растягивающие напряжения. Если брусок пошире, то у краев трещины будут его пересекать, а ближе к центру пойдут вдоль (рис. 124), как на реальном рисунке (балконная дверь).
А теперь попытаемся промоделировать развитие рисунка в изотропном поле. В этой ситуации трещина движется в сторону больших значений напряжений и, зародившись на вершине потенциального рельефа, она стремится вернуться к ней. Возьмем круглую чашку и нальем в нее однородную пасту мела. При ее высыхании должны появиться напряжения, одинаковые во всех направлениях. Но мы уже проводили этот эксперимент (см. рис. 5—8) и в итоге получили различные рисунки. Если мы полистаем абстрактные разделы азбуки, то найдем подобные рисунки в разделе «Прямоугольные решетки». Это анизотропные условия. И действительно, паста мела лишь кажется изотропной. Когда мы выливали пасту в чашки, то при ее растекании частицы мела неизбежно приобретали упорядоченную ориентировку, в результате свойства массива стали анизотропными. Для того чтобы паста, вылитая в кювету, легла ровным слоем, ее приходится разравнивать. В первом случае пасту немного постукивали о стол (см. рис. 5). При этом массив не приобрел макроанизотропных свойств, но на локальных участках сохранилась анизотропность, полученная при движении пасты во время первоначального растекания. Во втором варианте (см. рис. 6) чашки несколько раз наклоняли из стороны в сторону, в третьем (рис. 7) — их покачивали, проворачивая вокруг оси, а в четвертом — паста разравнивалась за счет легкого постукивания по ее поверхности в центре чашки. Все эти движения запечатлелись в порогово-потенциальном поле и проявились в рисунках. И чем более однородны условия, тем с большей вероятностью проявляется малейшая анизотропность.
Рис. 124
Заставить трещину двигаться в сторону больших значений потенциала можно, лишь создав сильные градиенты напряжений. Иначе трещина «увидит» анизотропность напряжений раньше, чем их градиент. Паста мела для этой цели — неудачная среда. Мел обладает высокой гигроскопичностью, поэтому резкую границу фронта усыхания (высокие латеральные градиенты влажности и напряжений) здесь создать трудно; даже при локальном нагреве массива высокое испарение в этом месте компенсируется быстрым подтягиванием влаги из соседних областей. В результате резкую смещающуюся границу структурообразования получить в этой среде трудно.
На рис. 125 показана структура, появившаяся на пасте мела, зажатой между двух стекол. Влага отсюда уходила только через боковой периметр, но и в этом случае резкий фронт усыхания не возникал. Некоторые трещины вырывались к центру структуры и быстро «нащупывали» анизотропность, связанную с растеканием пасты при сдавливании стеклами.
На рис. 126 видим результаты моделирования при наименее анизотропных условиях — сухой порошок мела насыпался в воду через сито без всякого перемешивания. Трещины здесь зародились на двух вершинах очень пологих холмов потенциального рельефа. Это первые трещины, в последующем, по мере роста напряжений, появились и другие.