За несколько лет до проведения конкурса, в 1878 году, американский астроном Джордж Уильям Хилл привлек всеобщее внимание к важности периодических решений (замкнутых кривых) задачи об устойчивости Солнечной системы. Периодическое (то есть повторяющееся) движение очень полезно при изучении устойчивости: при таком движении тело никогда не сойдет с орбиты, не столкнется с другим телом и не улетит бесконечно далеко. Хилл нашел периодическое решение задачи трех тел для случая, когда масса одного из них пренебрежимо мала по сравнению с остальными.
Проблема Хилла представляла собой частный случай задачи трех тел, в котором легкая планета движется под действием сил притяжения двух одинаковых звезд, лежащих в одной плоскости. Изучив проблему Хилла, Пуанкаре доказал: эту проблему, равно как и общий случай задачи трех тел, нельзя решить классическими методами решения дифференциальных уравнений — в отличие от задачи двух тел (ее решили Ньютон, Бернулли и Эйлер), не все интегралы движения можно решить при помощи законов сохранения (энергии, импульса и так далее). Пуанкаре сделал вывод: какого-то одного общего решения задачи трех тел, выраженного в простых и привычных функциях, не существует.
У Пуанкаре оставался последний шанс — метод возмущений. Применив его, он нашел решения в виде бесконечных степенных рядов. Тем не менее ничто не указывало, что эти ряды (аналогичные ряды ранее получили Эйлер, Лагранж и Линдстедт) сходились, пусть они и удовлетворяли уравнениям задачи трех тел. В конечном счете Пуанкаре оставил попытки найти аналитическое решение задачи.
Лишь в 1909 году, то есть более чем 20 лет спустя, математик Карл Зундман (1873–1949) наконец представил общее решение задачи трех тел в виде сходящегося ряда. Искомый ряд сходился крайне медленно, а решение Зундмана было настолько сложным, что на практике оказалось совершенно бесполезным, но если бы он добился своего результата 20 годами ранее, то, возможно, получил бы премию от короля Оскара II.
Пуанкаре, оставив анализ, обратился к топологии, решив, что если он рассмотрит вопрос с другой стороны, то докажет существование периодических решений.
Так как устойчивость решений нельзя было оценить путем изучения рядов, Пуанкаре решил использовать свою качественную теорию дифференциальных уравнений: описывают ли эти решения замкнутые кривые, то есть являются ли они периодическими? Если движущееся тело описывает замкнутую кривую, то есть цикл, то рано или поздно его движение повторится, следовательно, движение тела будет периодическим. Вооружившись своей новой теорией, в которой были объединены анализ и топология, Пуанкаре показал: существует бесконечно много замкнутых кривых, а следовательно, бесконечно много периодических решений.
Слева — король Швеции и Норвегии Оскар II, справа — Магнус Геста Миттаг-Леффлер. Король-пифагореец и математик-платоник.
На конкурс короля Оскара II двенадцать математиков представили двенадцать работ. Всего в пяти из них рассматривалась задача трех тел, но ни в одной не приводилось требуемого решения в виде степенного ряда. В итоге 20 января 1889 года, за день до шестидесятилетнего юбилея монарха, уважаемое жюри, получив одобрение короля, объявило победителем Анри Пуанкаре за статью «О задаче трех тел и уравнениях движения»: «Эта статья не может считаться полным решением предложенной задачи, однако она столь важна, что ее публикация откроет новую эру в истории небесной механики».
Французская пресса сочла Пуанкаре едва ли не героем, его победа расценивалась как триумф французской математики над немецкой, которой традиционно отдавалось первенство.
Однако вскоре стало понятно: что-то пошло не так. Когда Миттаг-Леффлер опубликовал статью Пуанкаре, астроном Йохан Аугуст Гуго Полден, подобно Немезиде, вместе с Леопольдом Кронекером незамедлительно провозгласил, что эта работа ничем принципиально не отличается от более ранней его работы, опубликованной в 1887 году.
Ситуация обострилась еще больше, когда несколько месяцев спустя, в июле 1889-го, на Пуанкаре с градом вопросов обрушился Эдвард Фрагмен, редактор журнала Acta Mathematica, который хотел прояснить непонятные моменты объемной статьи перед публикацией. Эрмит неспроста писал: «В этой работе, как и почти во всех остальных, Пуанкаре только показывает путь, однако требуется приложить немало усилий, чтобы устранить лакуны и закончить его работу».