Выбрать главу

Сечение Пуанкаре S. Если бы х и Р(х) совпадали, траектория была бы замкнутой кривой и представляла собой периодическое решение.

Пуанкаре указывал, что периодичность решения можно определить с помощью сечения Пуанкаре, если показать, что кривая в конечном итоге возвращается в ту же исходную точку, в которой пересекла сечение. Следовательно, сечение Пуанкаре фазового пространства отражает важнейшие аспекты решений дифференциального уравнения (в том числе их устойчивость).

По сути, Пуанкаре считал, что в каждом сечении будет наблюдаться типичная и не слишком сложная двумерная динамика, при которой траектории могут пересекаться только в особых точках. Однако он с ужасом обнаружил, что сепаратрисы седловых точек (две траектории, которые сталкиваются в гомоклинических точках) пересекаются, но не совпадают, а представляют собой две различные кривые, которые пересекаются снова и снова, образуя своеобразную решетку с бесконечным множеством точек пересечения. Оказалось, что трехмерная динамика, проекции которой содержатся в каждом сечении, невероятно сложна.

Ошибка Пуанкаре: он считал, что нестабильная сепаратриса (та, что удаляется от седловой точки) и стабильная (та, что приближается к седловой точке) совпадают.

Таким образом, суть задачи такова: локальная структура седловой точки проста, поскольку линейна, а глобальная структура необязательно будет простой, поскольку она нелинейна. Более того, глобальная структура может быть невероятно сложной — именно поэтому возникают хаотические движения. В примере с задачей трех тел обе сепаратрисы переплетаются снова и снова бесконечное число раз. Эта гомоклиническая сеть — великое открытие Пуанкаре, фигура настолько сложная, что сам автор не осмелился ни изобразить ее, ни подробно описать. Эта сеть и вызывает хаос, а также приводит к тому, что систему нельзя описать посредством аналитических интегралов.

Гомоклиническая сеть: р — седло, Ь0, h1, h2…. — бесконечное множество гомоклинических точек, в которых пересекаются две сепаратрисы.

Позднее, в своем монументальном трехтомнике «Новые методы небесной механики», опубликованном в 1892–1899 годах, Пуанкаре привел первое математическое описание хаотического поведения динамической системы, связанного с гомоклиническими орбитами:

«Если попытаться представить себе фигуру, образованную этими двумя кривыми и их бесчисленными пересечениями, каждое из которых соответствует двоякоасимптотическому решению, то эти пересечения образуют нечто вроде решетки, ткани, сети с бесконечно тесными петлями. Ни одна из двух кривых никогда не должна пересечь самое себя, но она должна навиваться на самое себя очень сложным образом, чтобы пересечь бесконечно много раз все петли сети. Поражаешься сложности этой фигуры, которую я даже не пытаюсь изобразить. Ничто не является более подходящим, чтобы дать нам представление о сложности задачи трех тел».

Гомоклинические сети — это рельефный отпечаток хаоса, и 200-страничная исправленная и дополненная статья Пуанкаре стала первым учебником по теории хаоса. Эрмит в письме Миттаг-Леффлеру писал: «Пуанкаре кажется ясновидящим, перед которым истины предстают в ярком свете, но лишь перед ним одним».

Хаотическая орбита в ограниченной задаче трех тел. Если бы наша планета вращалась вокруг двойной звезды (а не Солнца), Кеплер отказался бы от мысли найти законы, описывающие движение планет, — в этом случае в движении планет вокруг звезд нельзя было бы обнаружить каких-либо закономерностей.

Пуанкаре приложил очень много усилий, чтобы познакомить коллег с детерминированными динамическими системами, предсказать поведение которых невозможно.

Траектории-решения дифференциального уравнения могут так сильно переплетаться, что даже небольшая ошибка при выборе траектории, указывающей решение задачи, может привести к тому, что мы проследуем вдоль другой траектории, которая приведет нас к совершенно иному состоянию. В 1908 году в «Науке и методе», взяв за основу задачу трех тел и, что любопытно, прогнозы погоды, Пуанкаре заключил: