Выбрать главу
Динамические системы

Вы уже увидели, что хаос — это феномен, изучаемый в математической теории динамических систем. Динамическая система — это математическая модель, применяемая в естественных или общественных науках, которая представляет собой уравнение, описывающее изменение состояния системы с течением времени.

Существуют дискретные и непрерывные динамические системы. В дискретных системах время принимает набор фиксированных значений (t = 0, 1, 2, 3 …). Так, дискретная динамическая система формально задается уравнением в конечных разностях — формулой, которая описывает, как вычислить на основе исходного значения следующее, за ним — следующее, и так далее, до бесконечности. Уравнение в конечных разностях — это уравнение вида

где f — функция, описывающая, как вычисляется хn+1 на основе х. Иными словами, эта функция указывает, как вычислить х1 через x0, х2 через х1, х3 через х2 и так далее.

Уравнение в конечных разностях — это формула, выражающая значение переменной на следующем шаге через ее значение на предыдущем шаге. Так, для данного начального условия x решением динамической системы будет траектория {x0, х1, x2, х3 …}. Чтобы получить ее, нужно применить к х0 некоторое число раз.

В непрерывных динамических системах время не принимает набор фиксированных значений, а течет непрерывно, как и в реальном мире. Непрерывные динамические системы описываются дифференциальными уравнениями, подобными приведенным в предыдущих главах. Дифференциальные уравнения — это формулы, выражающие скорость измерения переменной в зависимости от ее текущего значения.

В математическом анализе хаоса мы для простоты будем рассматривать дискретные динамические системы, так как они позволят вам понять суть вопроса.

Существует теорема, согласно которой непрерывная динамическая система будет хаотической тогда и только тогда, когда существует такое сечение Пуанкаре, что в нем можно определить дискретную динамическую систему, которая также будет хаотической.

Существует особый класс дискретных динамических систем, обладающих очень важной характеристикой: эти системы являются нелинейными. Система называется линейной, если функция f является линейной, то есть функцией первой степени, следовательно, имеет вид f(х) = ах + Ь. Если же функция нелинейная (то есть ее степень больше 1) и, к примеру, имеет вид f(х) = ах2 + Ьх + с, то такая система считается нелинейной.

Несмотря на то что в нелинейных динамических системах значения величин, характеризующих систему, определяются значениями величин в предыдущий момент времени (такая система называется детерминированной), выходные значения непропорциональны входным. Микроскопические изменения в начальных условиях могут вызвать значительные изменения конечного состояния системы. Именно эта несоразмерность между причинами и следствиями объясняет, почему поведение подобных систем столь разнообразно: некоторые из них описывают фиксированные точки, периодические, квазипериодические и, наконец, хаотические орбиты.

Виды нелинейных динамических систем (стационарные, периодические и хаотические), соответствующие им представления временных рядов значений (слева) и графики траекторий на фазовой диаграмме (справа).

Эффект бабочки и эффект карточной колоды

Настало время ответить на вопрос, вынесенный в название главы: что же такое детерминированный хаос? Сначала посмотрим, что мы узнали о работах Пуанкаре, Смэйла и Лоренца из предыдущих глав. Мы увидели, что геометрическая сущность хаоса заключается в растяжении и последующем складывании траекторий.