Выбрать главу

Если мы сведем две рассмотренные выше категории воедино, то увидим, что нелинейные и неинтегрируемые системы обладают беспорядочным, непредсказуемым поведением, указывающим на присутствие хаоса. Следует заметить: даже тогда, когда хаос требует нелинейности (чтобы небольшие изменения начальных условий могли вызывать значительные изменения) и неинтегрируемости (чтобы мы не могли делать прогнозы в долгосрочном периоде), нелинейная и неинтегрируемая динамика необязательно будет хаотической. Существуют нелинейные и неинтегрируемые системы, демонстрирующие равномерное и предсказуемое поведение. Математики говорят, что эти две характеристики — нелинейность и неинтегрируемость — являются необходимыми, но не достаточными.

С другой стороны, среди нелинейных и неинтегрируемых систем выделяют два подвида: гамильтоновы системы, сохраняющие энергию, и диссипативные, которые не сохраняют энергию. Этим двум видам систем соответствуют две разновидности детерминированного хаоса, известные сегодня.

Гамильтонов хаос наблюдается в системах, сохраняющих энергию, например в системе из трех тел, изученной Пуанкаре, в звездной системе, рассмотренной Эно и Хайлсом, в моделях бильярда, описанных Адамаром и Синаем. Как мы рассказали, это хаотическое поведение возникает в силу бесконечного числа пересечений сепаратрис седловой точки, в результате которого образуется запутанная сеть траекторий. Хотя такие системы обладают очень сложной динамикой, в них отсутствуют странные аттракторы. Существует знаменитая теорема Лиувилля, согласно которой сохранение энергии препятствует возникновению аттракторов. В самом деле аттракторы — это диссипативные структуры, в которых энергия рассеивается по мере приближения системы к аттрактору.

Негамильтонов хаос, напротив, наблюдается в системах, не сохраняющих энергию, к примеру, в системе Лоренца. Так как эти системы не сохраняют энергию, в них присутствуют аттракторы и возникают наиболее известные хаотические объекты — странные аттракторы, представляющие собой промежуточное звено между теорией хаоса и фрактальной геометрией.

Странный аттрактор — это аттрактор хаотической системы, которому свойственна фрактальная геометрия. Фрактал — это геометрический объект неправильной формы с бесконечным множеством деталей, обладающий самоподобием, и, скорее всего, имеющий дробную размерность. Странные аттракторы — сложные структуры, которые при последовательном увеличении демонстрируют самоподобие, свойственное фракталам: в них вновь и вновь проявляется одна и так же структура. Кроме того, многие из них имеют дробную размерность. Иными словами, если мы находимся на плоскости, то размерность нашего фрактального аттрактора будет больше 1, но меньше 2 и составит, к примеру, 1,5: аттрактор будет занимать больше пространства, чем кривая, но меньше, чем плоскость. Если мы находимся в пространстве, размерность фрактального аттрактора будет больше 2, но меньше 3 и составит, к примеру, 2,25: аттрактор будет занимать больше пространства, чем плоскость, но меньше, чем объемное тело. Таков смысл дробной размерности. К примеру, размерность аттрактора Лоренца примерно равна 2,06. Любопытно, что с момента открытия аттрактора Лоренца считалось, что он имеет «странный» характер (то есть является аттрактором хаотической системы и, возможно, имеет фрактальную геометрию), однако строгое математическое доказательство этого было найдено лишь в 2000 году. В 1998 году Стивен Смэйл предложил доказательство этого утверждения в качестве одной из открытых математических задач XXI столетия.

В 2002 году математик Уорвик Такер смог строго доказать существование аттрактора Лоренца в статье под названием «Аттрактор Лоренца существует». Аттрактор в форме бабочки, изображенный Лоренцем на экране компьютера, стал реальностью. Аналогичная ситуация произошла со странным аттрактором Эно, открытым с помощью компьютера в 1976 году: его существование было математически доказано лишь в 1987 году усилиями шведского математика Леннарта Карлесона, лауреата Абелевской премии 2006 года.