В докладе Межправительственной группы экспертов по изменению климата, опубликованном в 2001 году, отмечено:
«При создании новых моделей климата и анализе уже существующих следует понимать, что мы имеем дело с нелинейной хаотической системой, следовательно, прогнозирование климата в долгосрочном периоде невозможно».
В докладе, опубликованном в 2007 году, также говорится:
«С момента публикации работы Лоренца (1963) известно, что даже простые модели могут обладать сложной динамикой в силу своей нелинейности. Нелинейная динамика, присущая климатической системе, наблюдается при моделировании климата на любом временном интервале. Модели, описывающие взаимодействие атмосферы и океана, климата и биосферы, климата и экономики могут демонстрировать похожую динамику, для которой характерны частичная непредсказуемость, бифуркации и переход к хаосу».
Чтобы в полной мере понять смысл заявлений, касающихся глобального изменения климата, следует понимать, что ни погоду, ни климат нельзя смоделировать так, чтобы с абсолютной точностью можно было предсказать, что произойдет через неделю или через 100 лет. Результаты, получаемые с помощью компьютерного моделирования, представляют собой сценарии с важной вероятностной составляющей, которую в каждом случае следует оценивать отдельно. Любой сценарий или модель, описывающие, к примеру, среднюю температуру на планете в 2100 году, зависят от ряда предпосылок (уровня выбросов парниковых газов, изменений солнечной активности и пр.). Основная проблема при составлении прогнозов по большей части заключается в том, чтобы определить, какие из этих предпосылок соответствуют текущему положению вещей. Мы еще не знаем, какие аспекты климата можно предсказать в долгосрочном периоде, поскольку ненаблюдаемые нами колебания могут вызвать значительные изменения в будущем.
Тем не менее достаточно непросто осознать, что погода и климат априори непредсказуемы в долгосрочном периоде в силу присутствия хаоса. В 1970-е годы многие исследователи ожидали, что путем добавления все новых и новых переменных они смогут стабилизировать систему и спрогнозировать состояние атмосферы в долгосрочном периоде. К примеру, Жюль Чарни оптимистично заявлял: «Не существует причины, по которой нельзя будет предсказать жизненный цикл атмосферы с помощью численных моделей, — все дело в том, что современные модели обладают серьезными недостатками». Однако один из этих серьезных недостатков был и остается неустранимым — это хаос.
Для некоторых ученых, как отмечает Тим Палмер (один из ведущих климатологов Межправительственной группы экспертов по изменению климата) в статье под названием «Глобальное потепление нелинейно. Можем ли мы быть в этом уверены?», хаос проявляется не столько в предсказании климата, сколько в метеорологических прогнозах. Следуя терминологии, предложенной Лоренцем, составление метеорологических прогнозов относится к задачам о начальных условиях, в которых эффект бабочки играет важную роль, поскольку при решении таких задач рассматриваются различные траектории. Если мы хотим составить прогноз погоды, нужно следовать вдоль траектории-решения уравнений, начальные условия которых описывают погоду на сегодня (температуру, давление, влажность и пр.). Прогнозирование климата, напротив, основано на решении так называемой краевой задачи, в которой влияние эффекта бабочки не столь заметно, поскольку основную роль в ней играют аттракторы, а не траектории. При изучении климата интерес представляет поведение системы в долгосрочном периоде, которое описывается аттрактором. Иными словами, если мы хотим предсказать климат, не нужно следовать вдоль какой-либо конкретной траектории — напротив, необходимо будет проанализировать, как ведут себя траектории в долгосрочном периоде по мере приближения к аттрактору, ведь именно аттрактор описывает средний погодный режим, то есть климат. Если мы также хотим понять, какое влияние оказывают на климат различные факторы и величины (концентрация СО2 в атмосфере, солнечное излучение и пр.), необходимо рассмотреть, как эти параметры меняют форму аттрактора.
Если мы представляем климат в виде аттрактора атмосферной системы, то эффект бабочки проявляться не будет. Однако, поскольку климатическая система нелинейна и, предположительно, обладает хаотическим поведением, то аттрактор будет странным и, возможно, будет иметь впадины, изобилующие крупными и мелкими деталями, то есть не слишком нестабильным. Представим, что климат описывается аттрактором системы Лоренца, и поворот вокруг его правого «крыла» означает, что пойдет дождь, а поворот вокруг левого «крыла» соответствует ясной погоде. В этом случае мы сможем определить закономерность, которой будет подчиняться климат в целом: в какие-то дни будет идти дождь, в другие — нет. Тем не менее нам сложно будет получить более подробную информацию, так как траектории вращаются вокруг каждого «крыла» аттрактора случайным образом.