Сегодня, спустя более 40 лет с момента открытия Лоренца, методы краткосрочного и среднесрочного прогнозирования существенно улучшились, поскольку развитию теории сопутствовало совершенствование суперкомпьютеров, способных снизить хаотичность погоды и климата. Одним из результатов этого развития стало появление так называемого ансамблевого, или комплексного прогноза (ensemble forecasting), который заключается в одновременном использовании нескольких множеств начальных условий и множеств математических моделей. Этот метод позволяет снизить ошибки при определении начальных условий и скомпенсировать ошибки, присущие непосредственно моделям.
Для краткосрочных (метеорологических) прогнозов, где преобладают ошибки, связанные с неопределенностью начальных условий, уже много лет успешно используется ансамблевый прогноз с одной моделью и множеством начальных условий. Иными словами, при прогнозировании погоды рассматривается развитие модели для похожих начальных условий, после чего путем сравнения различных результатов составляется итоговый прогноз. Как правило, эти результаты (порядка пятидесяти) для первых дней прогноза достаточно похожи, но после третьего или четвертого дня начинают проявляться расхождения, которые постепенно растут.
Комплексный прогноз температуры в Лондоне, составленный 26.06.1994 Европейским центром среднесрочного прогнозирования погоды (ECMWF). Начиная с четвертого дня разница в прогнозах составляет почти 16 °C (от 14 до 30 °С).
Для долгосрочных (климатических) прогнозов, где основную роль играют ошибки самих моделей, используется комплексный прогноз с несколькими моделями.
Иными словами, для одинаковых начальных условий рассматривается несколько моделей, после чего составляется итоговый прогноз путем взвешивания результатов. К примеру, на основе различных моделей Межправительственная группа экспертов по изменению климата определила, что рост средней мировой температуры к 2100 году относительно 2000 года составит от 2,2 до 4,7 °С. Результаты, полученные с помощью различных компьютерных моделей, неидентичны, и расхождения в результатах отражают степень неопределенности наших знаний о климате Земли.
Согласно глобальным моделям, средняя температура на планете к 2100 году возрастет на 2,2–4,7 °С, следовательно, неопределенность составляет почти 3 °С.
Развитие методов комплексного прогнозирования вызывает огромный интерес: ожидается, что они будут крайне полезны при прогнозировании глобальных изменений климата. Как бы то ни было, можно быть уверенными в одном: следует отказаться от мысли, что мы сможем найти универсальный алгоритм, позволяющий точно спрогнозировать динамику атмосферы в долгосрочной перспективе.
Заслуга Лоренца заключается в том, что он доказал: погода и, следовательно, климат, обладают хаотической, неустойчивой и непредсказуемой динамикой. Атмосфера — нелинейная и, очевидно, хаотическая система. Здесь хаос следует понимать не как нечто неупорядоченное, а скорее как порядок без периодичности. Климат — это хаотическая система в том смысле, что в ней могут наблюдаться непредсказуемые изменения даже в отсутствие внешнего воздействия. Одна из основных задач, стоящих перед исследователями сегодня, заключается в том, чтобы найти корректные математические модели хаотического климата, позволяющие совершить невозможное — предсказать будущее.
Как вы увидели, климатические модели — это математические модели, описывающие климат в прошлом и предсказывающие его в будущем. Существует сложная иерархия климатических моделей, начиная от самых простых, описывающих динамику средней мировой температуры посредством всего нескольких уравнений, до самых сложных, которые требуют использования суперкомпьютеров и описывают изменение нескольких климатических переменных (средней мировой температуры, ветра, влажности, океанических течений). Но даже самые сложные модели климата — это упрощения, так как до сих пор не найдены модели, позволяющие в точности описать прошлое и предсказать климат на локальном, а не на глобальном уровне. Недостаток вычислительных мощностей и ограниченные возможности прогнозирования затрудняют создание подробных моделей, необходимых для анализа изменений климата на уровне стран и регионов.