Выбрать главу

Это линейное дифференциальное уравнение, однако

(dy/dx) + y2 = 0

уже будет нелинейным, так как в этом случае неизвестная функция у возведена в степень, отличную от нуля или единицы.

* * *

Теория линейных дифференциальных уравнений довольно быстро была разработана полностью. А вот с теорией нелинейных дифференциальных уравнений все обстояло иначе, и нелинейные задачи, например уравнение колебаний маятника, решаются путем приведения уравнений к линейному виду, то есть путем устранения всех неудобных членов. Иными словами, для данного нелинейного дифференциального уравнения решалось похожее линейное дифференциальное уравнение, а полученные решения использовались как приближенные решения исходного уравнения.

Этот метод был назван методом возмущений. Вскоре стала понятна его неэффективность, однако прошло еще много времени, прежде чем нелинейным дифференциальным уравнениям стало уделяться примерно такое же внимание, что и линейным.

Одной из нелинейных задач, не дававших покоя физикам и математикам с XVII века, была задача небесной механики, связанная с моделированием Солнечной системы — задача n тел. Необходимо определить траекторию движения в пространстве для n тел разной массы, взаимодействующих по закону тяготения.

Несмотря на простую формулировку, решить эту задачу совсем не просто. Ньютон решил геометрически задачу двух тел для двух сфер, движущихся под действием взаимного притяжения, и привел решение в «Математических началах натуральной философии». В 1734 году Даниил Бернулли (1700–1782) привел аналитическое решение этой задачи в статье, удостоенной премии Французской академии наук, а во всех подробностях задача была рассмотрена лишь в 1744 году Эйлером, в труде «Теория движения планет и комет».

Портрет Эйлера.

«Читайте, читайте Эйлера — он учитель всех нас!»

(Пьер-Симон Лаплас)

* * *

НЕЛИНЕЙНОЕ УРАВНЕНИЕ КОЛЕБАНИЙ МАЯТНИКА

Если обозначить через θ угол наклона маятника относительно вертикали, то нелинейное дифференциальное уравнение колебаний маятника будет записываться так: d2θ/dt2 + sin θ = 0.

Для малых колебаний это уравнение можно заменить линейным, использовав в качестве приближенного значения тригонометрической функции sin θ сам угол θ. Полученное уравнение d2θ/dt2 + sin θ = 0 решить нетрудно: это линейное дифференциальное уравнение второго порядка, так как в нем фигурирует вторая производная, однако ни вторая производная, ни θ не возводятся в степень, большую 1.

Приведем еще один пример нелинейного дифференциального уравнения: m∙(dv/dt) — v2 = mg, где g — ускорение свободного падения (9,8 м/с2). Это уравнение описывает движение снаряда в среде, сопротивление которой пропорционально квадрату его скорости (v2 и будет нелинейным членом уравнения).

* * *

После того как задача n тел была решена для n = 2, физики и математики XVIII и XIX столетий приступили к решению этой задачи для n = 3, чтобы описать относительное движение Солнца, Земли и Луны. Были начаты две параллельные исследовательские программы: в рамках первой велся поиск общих приближенных решений с помощью метода возмущений, в рамках второй — поиск точных частных решений. К примеру, Лагранж решил задачу трех тел, рассмотрев систему, включающую Солнце, Юпитер и астероид Ахиллес. Самый знаменитый труд Лагранжа,

«Аналитическая механика», стал достойным завершением работ Ньютона по механике. Вообще этот математик считал Ньютона счастливейшим из ученых: Вселенная всего одна, а ее математические законы открыл именно он.

В то же самое время возник еще один вопрос, тесно связанный с задачей тел, — вопрос об устойчивости Солнечной системы, которая в то время представляла собой систему из семи тел. Ответ на этот вопрос напрямую зависел от решения задачи n тел. Ньютон знал, что для задачи двух тел можно привести точное решение для любого промежутка времени, однако при рассмотрении трех тел все обстояло иначе.

Хотя взаимное притяжение планет слабее, чем их притяжение к Солнцу, этими силами нельзя пренебречь, поскольку они могут сместить планету с орбиты или даже вытолкнуть ее за пределы Солнечной системы.

В своем труде «О движении тел по орбитам» (De motu corporum in gyrum), изданном в 1684 году, Ньютон писал, что планеты не движутся по эллипсам и не проходят по одной и той же орбите дважды. Он признавал, что задача о расчете траекторий движения планет на произвольный интервал времени неподвластна человеческому разуму.