Пуанкаре был автором знаменитой гипотезы, носящей его имя: «Является ли трехмерная сфера единственным трехмерным многообразием, на поверхности которого любая петля стягивается в точку?». Эта обобщенная гипотеза была доказана Фридманом для четырех измерений и Смэйлом — для большего числа измерений. Полное доказательство гипотезы Пуанкаре для трех измерений привел российский математик Григорий Перельман в 2003 году.
* * *
Далее Пуанкаре рассмотрел их с точки зрения топологии: он изучил поведение кривых, заданных дифференциальным уравнением, в окрестности этих точек, поскольку решения исходного дифференциального уравнения — это функции, которые можно представить на плоскости графически. Точнее говоря, для этих функций можно построить график в так называемой фазовой плоскости. Термин «фаза» изначально появился в электротехнике и обозначает состояние или место, в котором находится определенное решение. На фазовой плоскости изображается семейство кривых, которые описывают решения дифференциального уравнения. Эти кривые часто называются траекториями или, по аналогии с движением планет, орбитами.
Пуанкаре разделил особые точки на четыре класса: центр, фокус, узел, седло. Названия классов заимствованы из гидродинамики, так как траектории (орбиты) на фазовой плоскости можно сравнить с потоком жидкости, распространяющимся по ней. Центры — это особые точки, окруженные периодическими орбитами; фокусы — особые точки, которые притягивают близлежащие траектории (они подобны водостокам фазовой плоскости); узлы, напротив, являются неустойчивыми, так как отталкивают близлежащие траектории (продолжая аналогию с гидродинамикой, такие точки можно сравнить с кранами, из которых льется вода на фазовую плоскость); наконец, седла — особые точки, которые являются устойчивыми и неустойчивыми одновременно. Седла — это точки, в которых словно бы сталкиваются два потока воды. Траектории, которые пересекаются точно в седле, называются сепаратрисами.
Седла Пуанкаре называл гомоклиническими точками, сепаратрисы — двоякоасимптотическими. В конце главы вы узнаете, почему он выбрал именно такие названия.
Слева — центр, справа — фокус.
Слева — узел, справа — седло идее сепаратрисы, которые в этом случае представляют собой две прямые, пересекающиеся в центральной точке.
Позднее Пуанкаре сформулировал теорему, которая сегодня называется теоремой Пуанкаре — Бендиксона (в честь шведского математика, закончившего ее доказательство). Согласно этой теореме, наряду с предельными циклами (замкнутыми кривыми, притягивающими соседние траектории) указанные выше разновидности особых точек являются единственно возможными на плоскости. Так как в двух измерениях существуют только центры, фокусы, узлы, седла и предельные циклы, то можно сказать, что количество траекторий, которые описывают решения дифференциальных уравнений, невелико: они могут описывать витки вокруг центра или предельного цикла, удаляться от узла, проходить вблизи седла или приближаться к фокусу. Все возможные варианты траектории можно пересчитать по пальцам одной руки.
Предельный цикл осциллятора Ван дер Поля. Он представляет собой замкнутую кривую (на рисунке — широкая линия), которая притягивает к себе все ближайшие траектории.
В 1881 году, за четыре года до проведения конкурса, Пуанкаре уже понимал, что созданную им новую качественную теорию можно использовать для решения задачи трех тел и ответа на вопрос об устойчивости Солнечной системы. Не напрасно лейтмотивом статьи «О кривых, определяемых дифференциальными уравнениями» стали вопросы: «Описывает ли движущаяся точка замкнутую кривую? Всегда ли эта кривая будет находиться в определенной части плоскости? Иными словами, если использовать астрономические термины, является ли орбита устойчивой?».