Выбрать главу

Кроме того, у атома есть и магнитный момент, связанный с орбитальным движением электрона вокруг остова. Как легко рассчитать, этот момент не зависит от радиуса орбиты электрона и всегда равен одному и тому же значению, — как раз тому самому, пресловутому магнетону Бора. В самом деле, электрон заряда e и массы M, крутящийся по орбите радиуса R с частотой f, подобен витку с током I=ef, обладающему тем же радиусом и магнитным моментом m=Iπr2=efπR2. Из законов Планка и фотоэффекта, дающих связь энергии электрона E=M(2πRf)2/2=hf с частотой f его обращения в атоме, следует, что f=h/2R2M (§ 4.3). Подставляя значение f в m, получаем, что орбитальный магнитный момент не зависит от радиуса и частоты обращения: m=efπR2=eh/M. Но это в точности равно удвоенному магнитному моменту электрона m=2μ. И точно, эксперимент давно подтвердил, что магнитный момент электрона, вызванный его орбитальным вращением в два раза превышает момент от его осевого вращения. Таким образом, орбитальный магнитный момент атома и вещества, действительно, квантуется, меняется дискретно, но связано это не с абстрактными квантомеханическими законами, а — с дискретно меняющимся числом атомов и крутящихся в них электронов. Таким образом, и магнетон Вейсса, и магнетон Бора — это, в конечном счёте, всего лишь следствия магнетона Ритца и его магнитной модели атома. Именно модель Ритца позволяет описать все магнитные свойства веществ.

Возникает лишь вопрос о природе магнитного момента у самого электрона и о том, что задаёт его величину, — значение магнетона Ритца. Давно уже было понято, что магнитный момент электрона создаётся его вращением: любой крутящийся заряд, как говорилось, подобен витку с током, генерирующему магнитное поле, момент. Именно так, электрон становится подобен элементарному магнитику (Рис. 95). Интересно, что первым эту идею выдвинул всё тот же Ритц, связавший анизотропию электромагнитных свойств электрона — с наличием у него оси вращения [2]. Он же выдвинул гипотезу вращения внутриатомных частиц, наподобие волчка, для объяснения гравитации (§ 1.17) и особенностей расщепления спектральных линий (§ 3.5). Однако, поздней физики стали отрицать вращение электрона, и слово "спин", означающее "вращение", стали понимать совсем иначе, считая, что для размытого по квантовым законам электрона неправомерно говорить о таких механических свойствах, как вращение. Например, Паули, считавший частицы бесструктурными (§ 3.11), выступал против гипотезы спина, вращения электрона и снова попал впросак. Но, поскольку здесь следуем классической теории частиц, обладающих конкретной пространственной структурой, геометрической формой и размерами, вполне правомерно говорить о вращении электрона. Раз у всех электронов одинаковый магнитный момент, то и частота вращения должна быть у них одинакова. Почему же электрон вращается и что поддерживает частоту его вращения на одном и том же уровне?

Судя по всему, вращение электрона связано с испусканием реонов. Если вспомнить аналогию электрона с пиротехническими снарядами (Рис. 7, Рис. 139), то сам собой напрашивается и простейший механизм раскрутки электрона реактивными струями реонов, как у вертящихся фейерверочных огненных колёс, или огненных мельниц (Рис. 141). Так же крутится паровой шар Герона, сегнерово колесо, — ороситель для газонов в виде вертушки, раскручиваемой струями воды [75]. Наконец, если ищем электрических аналогий, можно вспомнить описанную в "Физическом фейерверке" [148, с. 163] древнюю зрелищную игрушку — ионно-ветряную мельницу, называемую "колесом Франклина" [137]. Этот прибор представляет собой крестовину — в виде заряженной солнечной свастики, уравновешенной на острие иглы и вращаемой за счёт реакции отдачи стекающих с игл ионов, — реактивных струй ионного ветра, дующего от всех зарядов (Роуэлл Г., Герберт С. Физика. М., 1994, с. 410).