Выбрать главу

Интересно, что нелинейный эффект генерации разностных или суммарных (в том числе кратных) частот от сложения двух колебаний, гораздо раньше, чем в оптике, был открыт и исследован в акустике (тоны Гельмгольца [72]). Никому и в голову не придёт объяснять этот эффект сложением квантов звука (гипотетических фононов), поскольку эффект легко объясним классической нелинейной теорией колебаний. Однако, когда и в оптике, наконец, выявили генерацию разностных и суммарных частот света (скажем, в рамановском комбинационном рассеянии), то учёные почему-то прибегли к квантовой трактовке эффекта, по принципу сложения и деления квантов света, хотя существовала готовая теория взаимодействия световых колебаний в нелинейных средах и соотношения Мэнли-Роу. Таким образом, квантовая теория эффекта Рамана и умножения оптических частот не только не нужна, но даже вредна, поскольку вводит избыточные и ошибочные утверждения, мешающие правильному пониманию процессов и их точному описанию.

Так, только волновая, колебательная трактовка объясняет тот факт, что для нелинейного фотоэффекта существует зависимость величины фототока от направления поляризации падающего света, совсем как в селективном фотоэффекте (§ 4.4). Раз преобразование излучения во вторую гармонику — это обычный нелинейный волновой эффект, протекающий в веществе (любое вещество в сильных лазерных полях становится нелинейной средой), то излучение должно прежде проникнуть в среду. А это, как видели, возможно лишь для света с продольной поляризацией, проникающего в толщу металла и выбивающего электроны уже не только с поверхности. Действительно, свет высокой интенсивности, даже при сильном затухании, способен сравнительно глубоко проникать в металл. Интенсивный свет, прошедший в глубь металла, и создаёт нелинейные эффекты. Удвоение частоты может происходить как в объёме металла, так и в отдельных его кристаллах, ориентированных случайным образом, в том числе, — таким, который обеспечивает выполнение условия синхронизма и эффективное преобразование первой гармоники во вторую. Итак, прозрачность металла — вещь относительная. Вдобавок в сильных лазерных полях, за счёт эффекта просветления среды, даже непрозрачная среда может стать отчасти прозрачной. Именно это позволило, в своё время, создать полупроводниковые лазеры, хотя полупроводники непрозрачны для света и во многом сходны по свойствам с металлами, что, как полагали кванторелятивисты, делает полупроводник непригодным в качестве активной среды лазера (§ 4.9). Таким образом, фотоэффект, часто называемый "многофотонным", гораздо правильней называть "нелинейным", как у Ландсберга [74]. Нелинейный фотоэффект — это чисто волновое, колебательное, классическое явление, относящееся к нелинейной оптике.

§ 4.6 Обратный фотоэффект, фотоионизация и солнечные батареи

Широко используется в практических целях так называемый внутренний фотоэффект, при котором, в отличие от внешнего, оптически возбуждённые электроны остаются внутри освещённого тела, не нарушая нейтральности последнего… Происходит пространственное разделение внутри объёма проводника оптически возбуждённых электронов и микрозон (дырок), возникающих в непосредственной близости от атомов, от которых оторвались электроны… Таким образом достигается прямое преобразование световой энергии в электрическую.

Г.С. Ландсберг, "Оптика" [74]

Последняя разновидность фотоэффекта — обратный фотоэффект: генерация металлом излучения при обстреле его поверхности электронами энергии E (§ 4.1). Электрон при захвате атомом начинает излучать на частоте своего вращения f=E/h (Рис. 156). Подобный же эффект работает и в некоторых светодиодах, где в переходном слое полупроводникового кристалла, края которого находятся под напряжением V, электроны набирают энергию E=eV и, при захвате атомами, закручиваясь в их магнитном поле, излучают на частоте вращения f=eV/h. Ещё раз отметим, что захват и выброс электрона атомом происходит без изменения энергии (без затрат и выделения энергии ионизации), поскольку захват производит магнитное поле нейтрального атома, не меняющее энергии захваченного электрона. Что касается потенциального электрического поля атомного ядра, то оно в принципе не способно захватить электрон. Поэтому, в фотоэффекте электроны лишь малую долю энергии получают от света, основная же часть энергии у них есть изначально. И, не исключено, что однажды опыт покажет: энергия электронов, покинувших металл, порой превосходит энергию выбившего их света. Энергия света идёт лишь на изменение орбиты электрона и отрыв его от атома при сходе с устойчивой орбиты. В фотоэлементах (солнечных батареях) эта энергия освобождения электронов и преобразуется в электрическую. В случае, если бы энергия света шла ещё и на придание скорости электронам, по сути, — на нагрев полупроводника, КПД солнечных батарей было бы существенно меньше известного. Реально же энергия света напрямую, с минимальными потерями, преобразуется в электрическую.