Выбрать главу

То, что ядра содержат позитроны, а удары электронов выбивают их оттуда, подтверждено явлением β+-распада и опытами Д. Скобельцына, в которых электрон-позитронные пары вылетали из ядер при облучении высокоэнергичными электронами [19, с. 326]. Если же энергия налетающего электрона или иной частицы (скажем, из космических лучей) — достаточно высока, то, при ударе о ядро, она может освободить до нескольких десятков электронов и позитронов. В этом случае, в камере Вильсона или на эмульсии видны "звёзды": из одной точки (ядра) исходят сразу сотни треков, — ядро как бы взрывается на сотни составлявших его элементарных зарядов (§ 3.9). Так же, и при облучении гамма-лучами с частотой f>>Eп/h образуются высокоэнергичные электроны, выбивающие из ядра сразу несколько электрон-позитронных пар. Понятно и то, почему число образуемых пар пропорционально квадрату заряда ядра Z2. Ведь, в ядрах с высоким Z — пропорционально Z2 увеличено число электронов, крутящихся в магнитном поле ядра — на соответствующих орбитах, с энергией порядка 1 МэВ. Значит, гамма-излучение в Z2 раз эффективней воздействует на вещество, вырывая эти электроны и, при ударе их о ядра, порождая больше электрон-позитронных пар.

Итак, опыт убеждает, что все так называемые "квантовые закономерности", открытые в явлениях фотоэффекта, фотоионизации и рождения электрон-позитронных пар, обусловлены отнюдь не свойствами света, но — свойствами атомов, вещества. Так, селективный и нелинейный фотоэффекты явно свидетельствуют, что процессы излучения и поглощения веществом света имеют резонансный, колебательный, волновой характер, а никак не квантовый. Лишь классическая модель фотоэффекта, которую отстаивал и отец фотоэффекта А. Столетов, способна помочь адекватному и простому пониманию всех закономерностей фотоэффекта.

§ 4.7 Эффект Комптона

Явление изменения длины волны при рассеянии света можно было бы объяснить с волновой точки зрения при помощи явления Доплера: электроны, рассеивающие рентгеновские лучи, под действием их выбрасываются из атомов по различным направлениям с разными скоростями. Таким образом, рассеянное излучение должно иметь изменённую длину волны в зависимости от скорости и направления движения рассеивающих электронов. Вычислив, как должны были бы двигаться рассеивающие электроны, нетрудно получить классическую картину явления Комптона.

Г.С. Ландсберг, "Оптика" [74]

Не составит большого труда объяснить с классических позиций и другое "квантовое" явление — эффект Комптона, который вместе с фотоэффектом считают неопровержимым доказательством фотонной теории. Суть его в том, что рентгеновские лучи претерпевают на электронах так называемое "комптоновское рассеяние" (Рис. 157). Причём, в отличие от обычного рассеяния, длины волн падающего λ0 и рассеянного λ' излучения не совпадают, а их разница жёстко связана с углом рассеяния θ соотношением

λ'—λ0= 2λкsin2(θ/2),

где λк — комптоновская длина, составляющая для электрона массы m величину λк=h/mc= 2,4·10–12 м [134]. Кроме того, как показали опыты, электрон в процессе рассеяния испытывает отдачу, приобретая скорость, направленную под таким углом φ к падающему лучу, что tgφ= ctg(θ/2)/(1+λк0). Всё выглядит так, словно не волна рассеивается на электроне, а с ним упруго сталкивается частица, фотон, передающий электрону часть своего импульса и энергии. К тому же, как утверждают многие учебники, классическое взаимодействие волны с электронами вещества не могло бы породить рассеянного излучения на смещённой частоте. Ведь свободный электрон, по теории Дж. Томсона, должен колебаться под действием электромагнитной волны — с частотой поля этой волны, а, значит, и излучение испускать — на той же частоте и с той же длиной волны λ0 [82]. А, между тем, рассеянное излучение в эффекте Комптона, кроме несмещённой компоненты спектра λ0, содержит сдвинутую, — с длиной волны λ'.