Выбрать главу

Рис. 161. Дифракция электронов: электронный луч, рассеянный кристаллом, в зависимости от угла φ даёт максимумы и минимумы тока электронов, попавших в детектор.

Физики, однако, не учли, что электроны при ударе о металл всегда генерируют электромагнитные волны. И, наоборот, электромагнитные волны, свет, попав в металл, вырывают из него электроны. Поэтому, не исключено, что реально на кристалле никеля дифрагировали не сами электроны, а — созданное ими ещё в электронной пушке электромагнитное рентгеновское излучение. Не зря, сравнивают дифракцию на кристалле электронов и рентгеновских лучей. А детектор, призванный регистрировать электроны, обнаруживает именно рентгеновские лучи. Ведь фотоплёнку, часто применяемую для регистрации дифракционной картины, одинаково способны засвечивать как электронные пучки, так и рентгеновские лучи.

Если же в качестве детектора использован гальванометр, меряющий величину тока, заряда, приносимого электронами, то и он может регистрировать, в действительности, просто интенсивность рентгеновских лучей. Эти лучи могут наводить ток и фото-ЭДС в гальванометре, а могут выбивать электроны из детектора, рождая ток, обратный тому, что дают электроны. Поэтому, кроме величины тока гальванометра, надо измерять его знак — соответствует ли он привнесению электронов или их уходу? Величина фототока, как гласит закон Столетова, пропорциональна интенсивности излучения. Поэтому, там, где дифракция рентгеновских лучей даёт максимумы, будет максимален и фототок, что интерпретируют как рост числа падающих электронов. А где расположены минимумы, там и фототок мал, — поэтому считают, что в эти области электроны почти не попадают (Рис. 162).

Рис. 162. Классическая трактовка опытов Джермера. Электроны, ударив в металл, генерируют рентгеновские лучи, дифрагирующие на кристалле и воздействующие на детектор.

Кроме качественного, имеется и количественное согласие. Длина волны де Бройля λ=h/MV, где M — масса частицы, V — её скорость, h — постоянная Планка. Чем выше скорость и энергия электрона, тем короче отвечающая ему длина волны. Судя по положению дифракционных максимумов в опыте Дэвисона, с ростом энергии электрона длина волны именно так и убывает. То же даёт и классическая картина явления. На кристалле дифрагируют не электроны, а созданные их ударами рентгеновские лучи, длина волны λ которых по законам обратного фотоэффекта связана с энергией электрона E=hf=hc/λ, или λ=hc/E. То есть, и в классике длина волны дифрагирующего излучения падает с ростом энергии, скорости электронов. Поскольку в опытах исследуют быстрые электроны со скоростями порядка скорости света c, их импульс p=MV выражают через энергию релятивистской формулой E=pc=MVc. Отсюда найдём λ=hc/E=h/MV, что совпадает с формулой де Бройля.

Если б учёные для оценки импульса электрона пользовались классическим выражением E=MV2/2, они бы заметили несоответствие, ибо длина волны выражалась бы иначе: λ= 2hc/MV2. Не замечают этого лишь от принятия формулы СТО E=pc. Одна ошибочная теория скрывает ошибки другой. Как в поговорке "рука руку моет, вор вора кроет", так и теория относительности с квантовой механикой: не будь одной, ложность другой стала б очевидна.

И, всё же, опыт Джермера обнаруживает расхождение с квантовой теорией. По СТО формула E=pc справедлива лишь для очень быстрых электронов, рождающих наиболее жёсткое излучение. Поэтому, чем медленней электроны, тем сильней отклонение в сторону классической формулы E=MV2/2. Так что, для медленных электронов, по классической теории, должны наблюдаться заметные несоответствия формуле де Бройля. И они, действительно, возникают, приводя в недоумение физиков [56, 134]. Те, правда, пытаются спасти теорию, полагая, что в металле, за счёт работы выхода, длина волны электрона меняется [82, 134]. Но все эти отчаянные попытки не выдерживают критики. Так, находимые из опытов Джермера, с учётом этой гипотезы, значения работы выхода — совершенно не согласуются с её реальными значениями. Значит, проблема именно в квантовой теории явления, а не в неучтённых помехах.