Выбрать главу

Сходство опытов столь очевидно, что сразу обращает на себя внимание. В обоих опытах наблюдается, вопреки предсказанной зависимости (на Рис. 164 и Рис. 165 показана пунктиром), — резкое падение числа долетевших до приёмника электронов, которое минимизируется, при достижении ими энергии E1. Недаром, зависимости на Рис. 164 и Рис. 165 качественно являются зеркальным отражением друг друга, поскольку σ~1/I. То есть, в опыте Рамзауэра возникает так же зависимость тока электронов от энергии, что и на Рис. 165. Поэтому, опыт Рамзауэра-Таунсенда объясняется так же, как опыт Франка-Герца. Набрав определённую энергию, электроны перестают в столкновениях рассеиваться упруго, а разом отдают атомам накопленную энергию (равную энергии возбуждения, — резонансному потенциалу). При этом, скорость их падает, что ведёт к усилению рассеяния, снижающего процент долетевших до приёмника частиц. Тогда, на монотонно убывающей кривой рассеяния появляется своеобразный резонансный максимум, всплеск. Вот почему график (Рис. 164) так напоминает знакомую всем со школы резонансную кривую.

Таким образом, резонансный максимум и сопровождающий его минимум рассеяния должны наблюдаться в любом случае, независимо от природы электрона. О резонансном пике сечения рассеяния, приходящемся на энергию возбуждения, упоминается и в литературе по теории столкновений и рассеяния электронов на атомах. А, раз на графике (Рис. 164), кроме экстремумов, связанных с возбуждением атома, нет никаких других, то, выходит, ни к чему здесь привлекать дифракцию и волновые свойства электрона. Так что, результат опыта Рамзауэра-Таунсенда не может служить доказательством волновой природы электрона: этот опыт есть не более, чем видоизменённый опыт Франка-Герца.

Это подтверждается и значениями энергии максимумов рассеяния в опыте Рамзауэра, которые близки к энергиям возбуждения указанных газов (Таблица 11: энергии возбуждения атомов по книге [91, с. 44]). Из-за того, что резонансный пик кривой рассеяния по разным причинам сильно размыт, минимум рассеяния может заметно отстоять от максимума, а энергия максимума — не точно совпадать с энергией возбуждения.

И вовсе не увеличением размеров атомов объясняется в опыте Рамзауэра уменьшение энергии E1 максимума рассеяния, а тем, что энергия возбуждения (и ионизации) постепенно убывает при переходе от гелия к ксенону. Если же размеры атомов, действительно, иногда оценивают по рассеянию и дифракции на них электронов, то, возможно, ошибочностью такой методики измерения и вызваны большие расхождения (иногда в 5 раз) значений атомных радиусов, найденных разными методами.

Итак, опыт Рамзауэра-Таунсенда не подтверждает волновых свойств электрона и должен быть исключён из соответствующих разделов учебников. Казалось бы, ничего страшного: просто в данном опыте проявляется, как и во многих других, не волновая, а только корпускулярная сторона двуликого электрона, зато в других дифракционных опытах волновые свойства этих, да и других частиц налицо. Но не всё так просто…

В опыте Рамзауэра, как и в опыте Франка-Герца, волновые свойства электрона, приводящие к уменьшению рассеяния, всё же должны проявляться, если и не при указанных, то при чуть меньших значениях энергий. Но в том-то и дело, что на зависимостях (Рис. 164 и Рис. 165), кроме обязательных колебаний рассеяния, связанных с возбуждением спектральных линий и ионизацией атомов, — больше нет никаких других. Получается, что опыт Рамзауэра не только не подтверждает волновой природы электрона, но даже опровергает её.

Вдобавок, ошибочная волновая трактовка опыта Рамзауэра, вошедшая в учебники, подрывает доверие к волновому объяснению и всех остальных опытов по интерференции или дифракции электронов и других частиц. Как увидим, все эти опыты можно объяснить рационально, без привлечения волновых свойств частиц. Выходит, реально нет никакого корпускулярно-волнового дуализма, и учёные ожидаемое — принимают за действительное. Просто результаты опытов по интерференции электронов, как и результаты опыта Рамзауэра, были настолько необычны, казались столь противоречащими классическим представлениям, что волновая природа электрона была в них признана безоговорочно, и не было попыток дать опытам альтернативное объяснение. А, между тем, видим, что такое объяснение может быть найдено, его следует поискать. Не зря, даже Эйнштейн и Планк, которых никто не обвинит в слепой приверженности классическим взглядам, работами которых и было положено начало квантовой физике, до конца своих дней отрицали квантовую механику и индетерминизм явлений микромира, утверждая, что невозможно для частицы быть одновременно волной, а для волны — частицей. И многие другие физики верили, что со временем в каждом из случаев выживет только одна модель, которая объяснит как волновые, так и корпускулярные свойства частиц или волн. Эту точку зрения самоотверженно защищал и А.Г. Столетов (§ 4.3).